POWER AUTOMORPHISMS OF FINITE p-GROUPS

BY

THOMAS MEIXNER

ABSTRACT

For a finite group G let $A(G)$ denote the group of power automorphisms, i.e. automorphisms normalizing every subgroup of G . If G is a p-group of class at most p, the structure of $A(G)$ is shown to be rather restricted, generalizing a result of Cooper ([2]). The existence of nontrivial power automorphisms, however, seems to impose restrictions on the p -group G itself. It is proved that the nilpotence class of a metabelian *p*-group of exponent p^2 possessing a nontrival power automorphism is bounded by a function of p. The "nicer" the automorphism $-$ the lower the bound for the class. Therefore a "type" for power automorphisms is introduced. Several examples of p -groups having large power automorphism groups are given.

In the following, groups will always be finite. We denote by ${K_i(G)}_{i\geq 1}$ the descending central series of the group G , by $c(G)$ the nilpotence class of G , and we define

$$
\Omega_i(G) := \langle x \in G \mid x^{p^i} = 1 \rangle, \qquad \mathbf{U}_i(G) := \langle x \in G \mid x = y^{p^i} \text{ for some } y \in G \rangle.
$$

For abbreviation let us put

$$
v_{i,j}(x, y) := [y, x, \cdots, x, y, \cdots, y] \text{ and } v_i(x, y) := v_{i,0}(x, y).
$$

A special part is played by commutators of length p, so define $s_i(x, y) := v_{i,p-i-1}(x, y)$. If G is a metabelian group, we shall always use identities like (1) to (7) of [3], page 364. The rest of the notation is taken from [8]. Of course, p will always denote a prime number.

1. Definition and well-known facts

Let G be a group; an automorphism α of G is called a power automorphism

Received May 8, 1979

of G , if it maps every subgroup of G onto itself. Power automorphisms were studied by Cooper in [2]; we restate those results of his that we use frequently:

 (1.1) LEMMA. The set $A(G)$ of power automorphisms of G is a normal abelian subgroup of $Aut(G)$ ([2], theorem 2.1.1, p. 337).

(1.2) THEOREM. Let $\alpha \in A(G)$. Then $[\alpha, \beta] = 1$ for every $\beta \in \text{Inn}(G)$ ([2], theorem 2.2.1, p. 339).

- (1.3) COROLLARY. Let $\alpha \in A(G)$. Then
- (a) the map $x \rightarrow [x, \alpha]$ is a homomorphism from G into $Z(G)$,
- (b) G' is fixed elementwise by α ([2], corollary 2.2.2, p. 339).

Let G from now on always denote a p -group. We shall define what we call the type of a power automorphism of G, so let $\alpha \in A(G)$. Then α maps every cyclic subgroup of G onto itself, so for every $x \in G$ there is a positive integer r_x such that $x^{\alpha} = (x)^{r_x}$. These exponents r_x of α will in general depend on the element $x \in G$. If there is a set Σ_{α} of n positive integers such that for every $x \in G$ there is an $r \in \Sigma_{\alpha}$ satisfying $x^{\alpha} = x'$, but no set of $n-1$ positive integers has this property, then α is said to be of type n. It is clear that such minimal sets Σ_{α} do exist, but even if we restrict ourselves to sets $\Sigma_{\alpha} \subseteq \{1, 2, \dots, \exp(G) - 1\}$, there are more than one minimal Σ_{α} . Power automorphisms of type 1 are called universal; a power automorphism α of type 2 for which we can choose $\Sigma_{\alpha} = \{1, r\}$ is called quasi-universal. It was shown in [11] how to assign to every $\alpha \in A(G)$ a unique set Σ_{α} , having the following properties: (i) $\Sigma_{\alpha} \subseteq$ ${1, 2, \dots, \exp(G) - 1},$ (ii) $|\Sigma_{\alpha}|$ = type of α , (iii) $\Sigma_{\alpha} = \{1, r\}$, if α is quasi-universal.

So in the following let Σ_{α} always have these three properties. Power automorphisms of an abelian group G are universal ([2], theorem 3.4.1, p. 343), and the restriction map gives an isomorphism from $A(G)$ onto $Aut((x))$ for every cyclic subgroup $\langle x \rangle$ of G which is of maximal order.

(1.4) LEMMA. Let G be a non-abelian p-group, $\alpha \in A(G)$. Then $r \equiv 1 \mod p$ *for every r* $\in \Sigma_{\alpha}$, α stabilizes the series $1 \subseteq \Omega_1(G) \subseteq \Omega_2(G) \subseteq \cdots \subseteq G$, and $A(G)$ *is a p-group* ([7], Hilfssatz 5, p. 166).

(1.5) THEOREM. *Let G be a regular p-group, then A (G) consists of universal power automorphisms only. Therefore via the restriction homomorphism A(G) is embeddable into Aut((x)) for every cyclic subgroup* $\langle x \rangle$ *of G, that is of maximal order* ([2], theorem 5.3.1, p. 349).

REMARK. Since every p-group of class less than or equal to $p - 1$ is a regular

 p -group, the simplest class of p -groups not covered by (1.5) is the one of p-groups of class p.

2. p-groups of class p

(2.1) THEOREM. *Let G be a p-group of class p. Then A(G) is elementary abelian or can be embedded via the restriction homomorphism into Aut(* $\langle x \rangle$ *) for some cyclic subgroup* $\langle x \rangle$ *of G, that is of maximal order.*

For p = 2, the rank of $A(G)$ *is always at most 2.*

PROOF. Let G be of exponent pⁿ, and let G' be of exponent p^k , then $1 \leq k \leq n$, since G is non-abelian. We have $\Omega_k(G) \subseteq C_G(A(G))$; for let $x \in G$ be of order p^k, then $\langle x, G' \rangle$ is a regular p-group, as its class is at most $p-1$. Thus $exp(\langle x, G' \rangle) = p^k$, and so by (1.5) and (1.3b) x is centralised by every power automorphism of G.

Now if $k = n$, then $G = \Omega_k(G) \subseteq C_G(A(G))$; so $A(G) = 1$. If $k = n - 1$, then $[G, A(G)] \subseteq \Omega_k(G) \subseteq C_G(A(G))$ by (1.4) and so for $x \in G$, $\alpha \in A(G)$ we have by (1.3a)

$$
[x^p, \alpha] = [x, \alpha]^p = [x, \alpha^p] = 1
$$

whence $A(G)$ is elementary abelian. For $p = 2$, we can make use of one of Cooper's results ([2], theorem 6.3.1, p. 351) to conclude that the rank of $A(G)$ is at most two, since by $[G, A(G), A(G)] = 1$ we know that $A(G)$ and $D(G)^+$ (see [2], a remark on page 349) are isomorphic.

So let finally $k \leq n-2$, and assume that $A(G) \neq 1$. Then direct application of the Hall-Petrescu Formula ([8], Satz III.9.4, p. 317) gives that G is p^{n-1} -abelian (see [12]), and $\Omega_{n-1}(G) = {g \in G | g^{p^{n-1}} = 1} \subset G$. Thus G can be generated by elements of order pⁿ, and we can find an element $x \in G$ of order pⁿ, such that $[x, \alpha] \neq 1$ for at least one $\alpha \in A(G)$.

Assume, by way of contradiction, that there is a nontrivial element $\beta \in A(G)$ with $[x,\beta]=1$. Then take $y \in G \backslash C_G(\beta)$ of minimal order p'; obviously $s > k$ holds, and we first assume $k < s < n$. Since $xy \notin C_G(\beta)$, we have $1 \neq [xy, \beta] =$ $[y, \beta] \in \langle xy \rangle \cap \langle y \rangle$, and since G is pⁿ⁻¹-abelian, we have $1 \neq x^{p^{n-1}} \in \langle xy \rangle$. As G is a p-group, we can conclude that $\langle x \rangle \cap \langle y \rangle \neq 1$, and so there is an integer j, such that $x^{ip^{n-1}} = y^{-p^{n-1}}$. Using the Hall-Petrescu Formula we get

$$
(x^{ip^{n-i}}y)^{p^{i-1}} = x^{ip^{n-1}}y^{p^{i-1}}\prod_{i=2}^{p^{i-1}}d_i\binom{p^{i-1}}{i}
$$

where $d_i \in K_i(\langle x^{p^{n-i}}, y \rangle)$; I don't care about the order of the product for a

348 **T. MEIXNER** Israel J. Math.

moment. Since the class of G is p, since p^{s-1} divides $\binom{p^{s-1}}{i}$ for $1 \le i \le p-1$ and p^{s-2} divides $\binom{p^{s-1}}{p}$ and since $k \leq s-1$, we can write this equation

$$
(x^{ip^{n-1}}y)^{p^{n-1}} = \tilde{d}_{p}^{p^{n-2}}, \qquad \tilde{d}_{p} \in K_{p}(\langle x^{p^{n-1}}, y \rangle).
$$

But the element \tilde{d}_{ρ} lies in the center of G, and so it can be expanded into a product of p-fold commutators with entries $x^{ip^{n-1}}$ and y, of course always one entry (at least) equal to $x^{ip^{n-1}}$, and since $n > s$ the element \hat{d}_n is equal to a pth power of an element of the commutator subgroup of G , so

$$
(x^{jp^{n-s}}y)^{p^{s-1}}=1.
$$

But $(x^{ip^{n-1}}y) \in G \backslash C_G(\beta)$, contradicting the minimality of s. So assume finally that $n = s$. Then there is an integer j such that $x^{ip^{n-1}} = y^{-p^{n-1}}$ since $\langle xy \rangle \cap \langle y \rangle \neq 1$, and $(x^{j}y)^{p^{n-1}} = x^{jp^{n-1}}y^{p^{n-1}} = 1$ since G is p^{n-1} -abelian. But again $x^{j}y \in G\backslash C_G(\beta)$, contradicting the minimality of s.

In the following we shall investigate whether (2.1) can be generalised in one direction or the other. First, we give a family of groups $H_{n,p}$, for which $A(H_{n,p})$ is neither elementary nor can be embedded by restriction into $Aut((x))$ for any element $x \in H_{\text{max}}$.

(2.2) EXAMPLE. Let $A_{n,p}$ be an abelian p-group of rank $p-1$ and type $(n + 1, n, n, \dots, n)$, that is $A_{n,p} = \langle a_1 \rangle \times \langle a_2 \rangle \times \cdots \times \langle a_{p-1} \rangle$ where a_1 is of order p^{n+1} and a_i is of order pⁿ, if $2 \le i \le p-1$. Then an endomorphism T of $A_{n,p}$ is defined by:

$$
a_i^T := a_i a_{i+1}
$$
 for $1 \le i \le p-2$, $a_1^{1+T+T^2+\cdots+T^{p-1}} = 1$.

Obviously T is an automorphism of $A_{n,p}$ of order p, which has the property that for any integer $i \neq 0$ mod p the endomorphism $1 + T^i + (T^i)^2 + \cdots + (T^i)^{p-1}$ is identically zero on $A_{n,p}$. The extension $G_{n,p}$ of $A_{n,p}$ by T, where $T^p = a_1^{p^n}$, is a p-group of maximal class, and $A(G_{n,p})$ is elementary abelian of rank 2, two linearly independent elements $\alpha, \beta \in A(G_{n,p})$ given by $a_1^{\alpha} = a_1$, $T^{\alpha} = T^{1+p}$; $a_1^{\beta} = a_1^{1+p^n}, T^{\beta} = T.$

It should be remarked that $G_{n,2}$ is a generalised quaternion group of order 2^{n+2} , and $G_{1,p}$ is Blackburn's example of an irregular p-group of class p, given in ([8], III.10.15).

Let k, n always denote positive integers, $\mathbb{Z}[X]$ the integer polynomial ring, and $n_k(X) := \sum_{i=0}^{p^k-1} X^i \in \mathbb{Z}[X]$. Then for any $1 \leq r < k$ we have $n_k(X) =$ $n_r(X)n_{k-r}(X^{p^r})$. We often consider the ring $\mathbb{Z}[T]$ of endomorphisms of the

Vol. 34, 1981 **FINITE** *p*-GROUPS 349

abelian group B, $T \in Aut(B)$, which is commutative, and obviously, if $o(T)$ p^k , $j \neq 0 \mod p$, then $n_k(T^j) = n_k(T)$.

PROPOSITION. Let $B_{n,p,k}$ be an abelian p-group of rank $(p-1)p^{k-1}$ and type $(n + 1, n, n, \dots, n)$. Then $B_{n,p,k}$ has an automorphism T_k of order p^k, such that the *endomorphism* $n_k(T^i)$ *is zero on* $B_{n,k}$ *for every j* $\neq 0$ mod p^k .

PROOF. Let $B_{n,p,k} = \langle b_1 \rangle \times \langle b_2 \rangle \times \cdots \times \langle b_{(p-1)p^{k-1}} \rangle$, where $o(b_1) = p^{n+1}$ and $o(b_i)=p^n$ for $2 \leq i \leq (p-1)p^{k-1}$. We shall prove by induction over k the following, stronger fact: $B_{n,p,k}$ has an automorphism T_k of order p^k , satisfying (i) $B_{n,p,k} = \langle b_1^{z(T_k)} \rangle$, (ii) $b_1^{n_k(T_k)} = 1$ for $j \neq 0$ mod p^k . The case $k = 1$ was described above as $(A_{n,p}, T)$. To prove the induction, we embed $B_{n,p,k}$ into

$$
B_{n,p,k+1} = \langle b_{1,0} \rangle \times \langle b_{1,1} \rangle \times \cdots \times \langle b_{1,p-1} \rangle \times \langle b_{2,0} \rangle \times \cdots \times \langle b_{(p-1)p^{k-1},p-1} \rangle
$$

by identifying it with the subgroup $\tilde{B}_{n,p,k} = \langle b_{i,0} | 1 \le i \le (p-1)p^{k-1} \rangle$ of $B_{n,p,k+1}$. $(o(b_{1,0}) = p^{n+1}$, and $o(b_{i,j}) = p^n$ for $(i, j) \neq (1, 0)$.) Then we can carry the action of T_k on $B_{n,p,k}$ over to $\tilde{B}_{n,p,k}$ and define T_{k+1} on $B_{n,p,k+1}$ by

$$
b_{i,j}^{T_{k+1}} := b_{i,j}b_{i,j+1} \quad \text{if } 1 \le i \le (p-1)p^{k-1}, \quad 0 \le j < p-1,
$$
\n
$$
b_{i,0}^{T_{k+1}} := b_{i,0}^{T_k} \quad \text{if } 1 \le i \le (p-1)p^{k-1}.
$$

This defines an endomorphism of $B_{n,p,k+1}$, since the images of the generators $b_{i,j}$ have suitable orders, and obviously using the induction hypothesis, we get $B_{n,p,k+1} = \langle b_{1,0}^{z(T_{k+1})} \rangle$. But then, for $b_{1,0}^{t(T_{k+1})} \in \text{ker}(T_{k+1})$ we have

$$
1 = b_{1,0}^{f(T_{k+1})T_{k+1}} = b_{1,0}^{f(T_{k+1})T_{k+1}P} = b_{1,0}^{T_{k+1}Pf(T_{k+1})},
$$

since $\mathbb{Z}[T_{k+1}]$ is commutative. On the subgroup $\tilde{B}_{n,p,k}$ however, T_{k+1}^p and T_k coincide, and therefore some power T_{k+1}^{ps} inverts T_{k+1}^{p} on $\tilde{B}_{n,p,k}$. Thus

$$
1=b_{1,0}^{(T_{k+1})^{p}f(T_{k+1})(T_{k+1})^{p}}=b_{1,0}^{(T_{k+1})^{p}(T_{k+1})^{p}f(T_{k+1})}=b_{1,0}^{f(T_{k+1})};
$$

and T_{k+1} is an automorphism of $B_{n,p,k+1}$. Clearly the order of T_{k+1} is p^{k+1} .

Now let j be a positive integer with $j \neq 0$ mod p^{k+1} , let $j = tp'$, where $(t, p) = 1$. Then if $r = 0$, we get $n_{k+1}(T_{k+1}) = n_{k+1}(T_{k+1})$, whence

$$
1 = b_{1,0}^{n_{k+1}(T_{k+1})} = b_{1,0}^{n_{k+1}(T_{k+1})} = b_{1,0}^{n_k(T_{k+1})}^{n_k(T_{k+1})}
$$

since $n_k(T_{k+1}^p) = n_k(T_k)$ on $\bar{B}_{n,k}$, and we can apply the induction hypothesis. If $r \neq 0$, then $1 \leq r \leq k$, since $j \neq 0$ mod p^{k+1} , and we have

$$
n_{k+1}(T_{k+1}^i)=n_{k+1}(T_{k+1}^{p^r})=n_k((T_{k+1}^p)^{p^{r-1}})n_1(T_{k+1}^{p^{r+k}}),
$$

and again the induction hypothesis implies

$$
1=b^{\frac{n_k}{1,0}(T_{k+1}^p)p^{r-1})n_1(T_{k+1}^{p^{r+k}})}=b^{\frac{n_{k+1}(T_{k+1}^p)}{1,0}},
$$

since $r-1 \leq k-1$.

Now the statement of the proposition follows, as any of the generators of $B_{n\alpha k}$ can be written $b_1^{f(T_k)}$ by (i), and $n_k(T_k)$ commutes with all the endomorphisms $f(T_k)$.

Let $B:=B_{n,n}$ and $T:=T_n\in \text{Aut}(B_{n,n})$ a pair with the properties from the proposition.

Let $B = \langle b_1 \rangle \times \langle b_2 \rangle \times \cdots \times \langle b_{(p-1)p^{n-1}} \rangle$, and consider the extension of B by T where $T^{p^{2n-1}} = b_1^{p^n}$, call it $H_{n,p}$.

Then any element of $H_{n,p}$ can be written $T^i b_i^i b$ with $b \in \Omega_n(B)$. But if $j \neq 0$ mod pⁿ, then $(T^i b^i b)^{p^n} = T^{ip^n} (b^i b)^{n} f^{(T)} = T^{ip^n}$ by the properties of T. Therefore for every element $x \in H_{n,p} \setminus (T^{p^n},B)$ we have $1 \neq x^{p^n} \in (T^{p^n})$. If $j \equiv 0 \mod p^n$, then $T^i b^i b \in \langle T^{p^*}, B \rangle$ and if $i \neq 0 \mod p$, $1 \neq (T^i b^i b)^{p^*} = b^{\text{ip}^*} \in \langle T^{p^*} \rangle$. Therefore by

$$
b_1^{\alpha} := b_1
$$
, $T^{\alpha} := T^{1+p^{\alpha}}$; and $b_1^{\beta} := b_1^{1+p^{\alpha}}$, $T^{\beta} := T$

two linearly independent power automorphisms of $H_{n,p}$ are given. $A(H_{n,p})$ has rank 2 and type $(n, 1)$.

We see that for $n \ge 2$, $A(H_{n,p})$ is not elementary abelian, and if p is odd, it cen not be embedded into the automorphism group of a cyclic group, since it is not cyclic itself. For $p = 2$ to be embeddable into Aut($\langle x \rangle$) by restriction, $A(H_{n,p})$ would have to induce the inverting automorphism on $\langle x \rangle$. But since $[x, A(H_{n,p})] \subseteq \langle x^{2^n} \rangle$ this yields $n = 1$.

The following two examples show that there are p-groups, the power automorphism group of which has rank 3. The second one is a 3-group of class 3; thus the bound 2 on the rank of $A(G)$ in (2.1) does not carry over to the case of odd primes.

(2.3) EXAMPLES. (a) Let $A = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ be an abelian group of order 16, such that $a^4 = b^2 = c^2 = 1$, and define automorphisms s, t of A by

$$
a^s := ab
$$
, $b^s := ba^2$, $c^s := c$;
 $a^s := ac$, $b^s := ba^2$, $c^s := ca^2$.

Then both are automorphisms of order 4 of A , and t inverts s in Aut (A) . We can therefore extend A successively by s and t setting $a^2 = s^4 = t^4$ and $s^1 = s^{-1}$. The extension G has order 2^s and class 3, and the automorphisms of G induced by the elements t^2 , s^2t^2 and *bc* generate an elementary abelian power automorphism group of order eight.

(b) Let $A = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle z \rangle$ be an elementary abelian 3-group of order 3⁴. Then A has an elementary abelian group of automorphisms $\langle y, x, t \rangle$ of order $3³$, where

> $a^y := a$, $b^y := bz^2$, $c^y := cz^2$, $z^y := z$; $a^x := az^2$, $b^x := bz^2$, $c^x := cz$, $z^x := z$; $a' := a$, $b' := b$, $c' := cz^2$, $z' := z$.

If we extend A successively by y, x, and t, putting $y^3 = x^3 = t^3 = z$, and $[y, x] = a$, $[y, t] = c$, $[x, t] = b^2$, we get an extension H of order 3⁷ and class 3, and the power automorphism group $A(H)$ is elementary abelian of order $3³$, generated by the automorphisms induced by the elements a , a^2b , and abc^2 .

REMARK. AS indicated in the preceding examples, there is a general method to construct p-groups having non-universal power automorphisms. It is based on extending a group H of exponent pⁿ, $n > 1$, by a cyclic p-group $\langle y \rangle$ such that the "norm map" (when H is abelian it is an endomorphism of H)

$$
x \to (x)^{y^{i(p-1)}}(x)^{y^{i(p-2)}} \cdots (x)^{y^{i}}(x)
$$
 of y^{i} on H

maps every element $x \in H$ onto 1, if p does not divide i. This situation is very similar to the one with p-groups for which the Hughes H_p -subgroup is a proper subgroup (see [6], theorem 2, p. 1099); in fact, if $y^p = 1$, the semidirect product of H by $\langle y \rangle$ will have this property. And indeed, for groups of exponent p^2 there is a correspondence between groups possessing quasi-universal power automorphisms and groups of Hughes type, if we use this expression for the not necessarily splitting extension of the group H of exponent p^n , $n > 1$, by the automorphism y of order p , such that the "norm maps" on H are trivial for all the nontrivial powers y^i of y.

 (2.4) (a) *Every group G of exponent p² which is of Hughes type has a central extension P possessing a quasi-universal power automorphism.*

(b) *Every group G of exponent* p^2 *possessing a quasi-universal power autoraorphism has a subgroup of Hughes type.*

PROOF. (a) Let $y \in G$ and $H \subseteq G$ of index p, such that $G = \langle y, H \rangle$ is of Hughes type. Then, if the extension is non-split, we have $\langle y \rangle \cap H = \langle y^p \rangle \subseteq$

 $Z(G)$, and by $y^{\theta} := y^{1+p}$, $h^{\theta} := h$ for $h \in H$ an automorphism θ of G is defined ([13], lemma 3, p. 42), which satisfies $(y'h)^{\theta} = y'h(y^{\theta} + y^{\theta})^p$ for every element $y'h \in G\backslash H$ by the properties of y. Therefore, since H is of exponent p^2 , θ is quasi-universal with $\Sigma_{\theta} = \{1, 1 + p\}.$

If $y^p = 1$, define P to be the extension of H by a cyclic group of order p^2 , $\langle x \rangle$, such that x acts on H in the same way as y does, and that the extension splits. Then $\langle x^p \rangle \subseteq Z(P)$, and $P/\langle x^p \rangle \cong G$, so P is a central extension of G. And again the setting $x^{\alpha} := x^{1+p}$, $h^{\alpha} := h$ for $h \in \langle x^p H \rangle$ defines a quasi-universal power automorphism on P.

(b) Let G be a group of exponent p^2 , and let $\alpha \in A(G)$ be quasi-universal. Then for some nontrivial power β of α we can choose $\Sigma_{\beta} = \{1, 1 + p\}$. Let $y \in G\backslash C_G(\beta)$, and put $U:=(y, C_G(\beta))$. Then for every element $y'h \in U\backslash C_G(\beta)$ we have $(y'h)^p = [y'h, \beta] = [y^i, \beta] = y^i$, since β is quasi-universal, so (h) ^{y'(p-1)} (h) ^{y'(p_r-2)} \cdots (h) ^{y'} (h) = 1 and since $y^p \in \Omega_1(Z(G)) \subseteq C_G(\beta)$, we have that $y'h \in U\setminus C_G(\beta)$ is equivalent to $i\neq 0$ mod p, and so U is of Hughes type, as $exp(C_G(\beta)) = p^2$ (otherwise β would be universal).

3. **Metabelian groups of exponent** p2

In this third section we shall consider the question, whether the existence of a nontrivial power automorphism imposes restrictions on the nilpotence class of the p-group G. The procedure is motivated by (1.4) , which stated: If G is a group of exponent p , which has a nontrivial power automorphism, then G is abelian.

In the following, we shall answer the question for metabelian groups of exponent p^2 . Thereby we make use of a result of Gupta and Newman ([3], theorem, p. 362), but only in the following specialisation:

(3.1) THEOREM. *Let G be a metabelian p-group, and let i,j,k be positive integers strictly smaller than p. Then* $c(G) \leq i + j + k - 1$, *provided*

$$
v_k(z, v_{j,i-1}(y, x)) = [x, y, \dots, y, x, \dots, x, z, \dots, z] = 1 \quad \text{for every } x, y, z \in G.
$$

PROOF. Since by hypothesis the above word holds in G, [3] tells that **the** exponent of $K_{i+i+k}(G)/K_{i+i+k+1}(G)$ divides $(i!)(j!)(k!)$. But since *i, j* and *k* are strictly smaller than p , none of the factorials $i!$, $j!$, or $k!$ is divisible by p , so the p-group $K_{i+j+k}(G)/K_{i+j+k+1}(G)$ is trivial, and since G is a finite nilpotent group, we get $K_{i+j+k}(G) = K_{i+j+k+1}(G) = 1$.

For later **reference we also need the following lemma, which is presumably well-known.**

(3.2) LEMMA. Let $G = \langle x, y \rangle$ *be a metabelian p-group*, and let $\mathbf{U}_1(G) \subseteq$ *Z*(*G*). If *G* is *p*-abelian, then $c(G) \leq p-1$.

PROOF. Since G is p-abelian, and since $\mathbb{U}_1(G) \subseteq Z(G)$, the map $z \to z^p$ is a homomorphism from G into $Z(G)$, so $exp(G') \leq p$. Since by ([9], Satz 3, p. 10), $c(G/Z(G)) \leq p-1$, we have $c(G) \leq p$, and so ([10], Hilfssatz 3, p. 563) gives $\prod_{i=1}^{p-1} s_i(v, w)^{(-1)^i} = 1$ for every $v, w \in G$, as G is p-abelian. But now ([10], Hilfssatz 2, p. 562) which is a special case of ([1], lemma 1, p. 65) tells that $s_i(x, y) = 1$ for $1 \le i \le p - 1$, and by ([10], Hilfssatz 1, p. 562) we get the result.

(3.3) LEMMA. Let G be a metabelian group of exponent p^2 , and let $1 \neq \alpha \in$ *A (G) be universal. Then*

- (i) every two-generated subgroup of G has class at most $p 1$,
- (ii) *G is a regular p-group,*
- (iii) $c(G) \leq p$.

PROOF. For some nontrivial power β of α we may assume $\Sigma_{\beta} = \{1 + p\}$, and so by (1.3a) G is p-abelian and $\mathbb{U}_1(G) \subseteq Z(G)$. Thus by (3.2) every twogenerated subgroup of G is of class at most $p-1$, and hence regular. Regularity, however, is a property that is checked on two elements, and so G is a regular p-group (see also [12], lemma 1, p. 736). Finally, since $v_{p-1}(y, x) \in K_p(\langle x, y \rangle) = 1$ for every two elements x, $y \in G$, we also have $v_1(z, v_{p-1}(y, x)) = [v_{p-1}(y, x), z] = 1$ for every *x*, *y*, *z* \in *G*. Now (3.1) tells $c(G) \leq p$.

If the power automorphism α of G is not universal, we have to consider subgroups (x, y) of G, where y is fixed by α , while x is not. The easiest case is the following one.

(3.4) LEMMA. Let G be a metabelian group of exponent p^2 , and let $1 \neq \alpha \in$ $A(G)$ *. Let* $x \in G \backslash C_G(\alpha)$ *, and* $v \in G'$ *of order p. Then* $c(\langle x, v \rangle) \leq p - 1$ *.*

PROOF. Let $U:=(x, v)$, then since G is metabelian and $v^p=1$, we have $\exp(U') \leq p$, and $K_i(U) = \langle v_{i-1}(x,v), K_{i+1}(U) \rangle$. Thus $[xv, \alpha] = [x, \alpha] \in \langle x^p \rangle \subseteq$ *Z(G)* gives

$$
1 = [v, x^p] = \prod_{i=1}^p v_i(x, v)^{e_i} = v_p(x, v),
$$

so $c(U) \leq p$, and we can use ([10], Hilfssatz 3) to get

$$
(x^{j}v)^{p} = x^{j p} s_{p-1}(x^{j}, v)^{(-1)^{p-1}} = x^{j p} s_{p-1}(x, v)^{(-j)^{p-1}} = x^{j p} . s_{p-1}(x, v) \text{ for every integer } 1 \leq j \leq p-1.
$$

Therefore $\langle [xv, \alpha] \rangle = \langle (xv)^p \rangle$ gives $s_{p-1}(x, v) \in \langle x^p \rangle$, and since for $1 \leq j \leq p - 1$ we have $x^j v \in G \backslash C_G(\alpha)$ and so $(x^j v)^p \neq 1$, we conclude $s_{p-1}(x, v) = 1$.

Now we treat the general case. Again, we make use of the fact that for $x, y \in G$, where G is a metabelian group of exponent p^2 , $1 \neq \alpha \in A(G)$ and $x \in G \backslash C_G(\alpha)$, $y \in C_G(\alpha)$, we have

$$
(*) \qquad \langle (x^iy)^p \rangle = \langle [x^iy, \alpha] \rangle = \langle [x^i, \alpha] \rangle = \langle x^p \rangle \subseteq Z(G) \quad \text{for } 1 \leq j \leq p-1.
$$

(3.5) LEMMA. Let G be a metabelian group of exponent p^2 and $1 \neq \alpha \in$ *A(G). Let* $U: = \langle x, y \rangle \subset G$, where $x \in G \setminus C_G(\alpha)$ and $y \in C_G(\alpha)$. Then

- (i) $U_1(K_m(U)) \subseteq K_{m+p-1}(U)\langle x^p \rangle$ for every $m \geq 2$,
- (ii) $s_i(x, y) \in K_{p+1}(U)(x^p)$ for $1 \leq i \leq p-2$, $y^p s_{p-1}(x, y) \in K_{p+1}(U)(x^p)$,
- (iii) $c(U) \leq 2(p-1)$.

PROOF. Since U is a nilpotent group, $\mathbb{U}_1(K_m(U)) \subset K_{m+p-1}(U)\langle x^p \rangle$ for sufficiently large m . So let k be the minimal integer for which this relation holds, and assume by way of contradiction that $k > 2$. Let $v \in K_{k-1}(U)$ be an element of order p^2 , then we can easily show by induction that $K_j(\langle x, v \rangle) \subseteq K_{j+(k-1)-1}(U)$ for $j \ge 2$, so $K_p(\langle x,v \rangle) \subseteq K_{(k-1)+p-1}(U)$. By hypothesis we have $\mathbb{U}_1(\langle x,v \rangle') \subseteq$ $\mathbb{U}_1(K_k(U)) \subseteq K_{k+p-1}(U)(x^p)$, so the Hall-Petrescu Formula tells $x^pv^p \equiv (xv)^p$ $\text{mod } K_{k-1+p-1}(U)\langle x^p \rangle$ and by (*), since by hypothesis $v \in K_2(U) \subseteq C_G(\alpha)$, we get $v^{\rho} \in K_{k-1+p-1}(U)\langle x^{\rho}\rangle$, contradicting the minimality of k. By (i) and (*) we get from ([10], Hilfssatz 3)

$$
y^p \prod_{i=1}^{p-1} s_i(x^i, y)^{(-1)^i} \equiv 1 \mod K_{p+1}(U)\langle x^p \rangle
$$
 for $1 \leq j \leq p-1$.

But instead of using ([10], Hilfssatz 2) like in (3.2) we must go back to Brisley's theorem now.

Put $\tilde{s}_i(x^i, y) := s_i(x^i, y)^{(-1)^i}$ for $1 \le i \le p-2$, and $\tilde{s}_{p-1}(x^i, y) := y^p s_{p-1}(x^i, y)$. Then we have for $1 \leq j \leq p-1$

$$
\prod_{i=1}^{p-1} \bar{s}_i(x^i, y) \equiv 1 \bmod K_{p+1}(U)\langle x^p \rangle.
$$

Since the elements $s_i(x^i, y)$ are central mod $K_{p+1}(U)(x^p)$, the elements $\tilde{s}_i(x^i, y)$ do commute mod $K_{p+1}(U)\langle x^p\rangle$ and we have

$$
\tilde{s}_i(x^i, y) \equiv \tilde{s}_i(x, y)^i \mod K_{p+1}(U)\langle x^p \rangle, \qquad 1 \leq i, j \leq p-1.
$$

Therefore we can apply ([1], lemma 1, p. 65) to get (ii). $K_p(U)$ is spanned mod $K_{p+1}(U)$ by the elements $s_i(x, y)$, since U is metabelian, and so $K_p(U) \subseteq$ $(y^p, x^p, K_{p+1}(U))$. Thus

$$
[K_p(U),y]\subseteq[(y^p,x^p,K_{p+1}(U)),y]\subseteq K_{p+2}(U),
$$

and since U is metabelian, we get $y \in C_{U}(K_i(U)/K_{i+2}(U))$ for every $i \geq p$. So $K_i(U) = \langle v_{i-p}(x, y^p), K_{i+1}(U) \rangle$ for $i > p$. Since $y^p \in \langle x^p, U' \rangle$ and is an element of order at most p, the elements x and y^p lie in a subgroup of G that is generated by x and an element of order p in G', and so (3.4) yields $v_{n-1}(x, y^p) = 1$. Therefore $K_{2p-1}(U) = K_{2p}(U) = 1$, and (iii) holds.

For the proof of the main result in this section we need one more definition. If $a \in G$, we denote by M_a the set $\{v_{p-1}(a, w) \mid w \in G'\}$.

(3.6) LEMMA. Let G be a metabelian group of exponent p^2 , $1 \neq \alpha \in A(G)$ and $a \in G \backslash C_G(\alpha)$. Then

- (i) M_a is an elementary abelian normal subgroup of G ,
- (ii) *if* $y \in C_G(\alpha)$, and $U:={\langle} y, a{\rangle}$, then $K_{p+1}(U) \subset M_a$.

PROOF. The set M_a is a subgroup of G ; for, since G is metabelian, $v_{p-1}(a, w_1)v_{p-1}(a, w_2) = v_{p-1}(a, w_1w_2)$ if $w_1, w_2 \in G'$. Of course, $M_a \subseteq G'$ is abelian, and since

 $(v_{p-1}(a, w))^s = v_{p-1}(a, w^s)$ for $w \in G'$, $g \in G$,

 M_a is a normal subgroup of G .

Let $v_{p-1}(a, w) \in M_a$. Then, since by (3.5) the class of $\langle a, w \rangle$ is at most $2p - 2$, we know that $c(\langle a, v_{p-1}(a, w) \rangle) \leq p - 1$, and $\langle a, v_{p-1}(a, w) \rangle$ is a regular subgroup of G. Therefore the (nontrivial!) restriction of α on $\langle a, v_{p-1}(a, w) \rangle$ is universal, and $v_{p-1}(a, w)^p = 1$.

To prove (ii), let $y \in C_G(\alpha)$, and put $U = \langle a, y \rangle$. Then by (3.5ii), $K_p(U) \langle a^p \rangle =$ $\langle s_{p-1}(a, y), a^p, K_{p+1}(U) \rangle$, and $y \in C_U(K_i(U)/K_{i+2}(U))$ for $i \geq p$, and so for $i > p$ $K_i(U) = \langle v_{i-1}(a, y), K_{i+1}(U) \rangle$, and $K_{p+1}(U) = \langle v_{i-1}(a, y) | i \rangle = p$ $\langle v_{p-1}(a, v_{i-p}(a, y))|i \rangle$ i > p), which is a subgroup of M_a.

(3.7) LEMMA. Let G be a metabelian group of exponent p^2 , $1 \neq \alpha \in A(G)$ and $s, t \in G$. Then there is an element $a \in G \backslash C_G(\alpha)$ such that $v_{p-1,1}(s, t) \in M_a$.

PROOF. If $s \in C_G(\alpha)$ and $t \in G \setminus C_G(\alpha)$, then $v_{p-1,1}(s, t)$ is in M_t by (3.6ii); and if $t \in C_G(\alpha)$ and $s \in G\backslash C_G(\alpha)$ then $v_{p-1,1}(s, t) \in M_s$ by (3.6ii).

If $s, t \in G \setminus C_G(\alpha)$, then consider the group $G/[G, \alpha]$. If $exp(G/[G, \alpha]) = p$, then $\langle s, t, [G, \alpha] \rangle$ / $[G, \alpha]$ is a two-generated metabelian group of exponent p, and has therefore at most nilpotence class $p-1$ by ([9], Satz 3, p. 10). But since $[G, \alpha] \subseteq Z(G)$, we get $v_{p-1}(s, t) \in Z(G)$ and $v_{p-1,1}(s, t) = 1$. If $exp(G/[G, \alpha]) =$ p^2 , then the Hughes subgroup $H_p(G/[G,\alpha])$ of $G/[G,\alpha]$ is nontrivial and can by ([4], theorem, p. 451) only be of index 1 or p in $G/[G,\alpha]$. We prove that

for any nontrivial subgroup X of $A(G)$ the Hughes

(**) subgroup $H_p(G/[G, X])$ of $G/[G, X]$ is covered by $C_G(X)$.

 $H_p(G/[G, X])$ is generated by the cosets $b[G, X]$ of order p^2 in $G/[G, X]$, that is, cosets $b[G, X]$ for which $b^p \notin [G, X]$. But if there was an element β of X not centralising b, we would have $\langle b^p \rangle = \langle [b, \beta] \rangle \subseteq [b, X] \subseteq [G, X]$, so $b \in C_G(X)$.

Since $[G, \alpha] \subset C_G(\alpha)$, and since $\alpha \neq 1$, we must have $H_p(G/[G, \alpha]) =$ $C_G(\alpha)/[G, \alpha]$ and $|G/C_G(\alpha)| = p$. Thus $t = sc$ for an element $c \in C_G(\alpha)$ and $v_{p-1,1}(s, t) = v_{p-1,1}(s, sc) \in K_{p+1}(\langle s, c \rangle) \subseteq M_s.$

Let finally *s, t* $\in C_G(\alpha)$. Then put $U: = \langle s, t \rangle \subseteq G$, choose an arbitrary element $a \in G \backslash C_G(\alpha)$ and put $V := UM_a \langle a^p \rangle$, $C := C_V(V/M_a)$. By (3.5ii) we have $u^p v_{p-1}(a, u) \in M_a(a^p)$ for every $u \in U$, and since $[v_{p-1}(a, s), t] = [v_{p-1}(a, t), s]$ mod M_a , we have

$$
[v_{p-1}(a, s), t, s] = [v_{p-1}(a, s), s, t] \in M_a,
$$

$$
[v_{p-1}(a, s), t, t] = [v_{p-1}(a, t), s, t] = [v_{p-1,1}(a, t), s] = 1 \text{ mod } M_a,
$$

and so $[v_{p-1}(a, s), t]$, $[v_{p-1}(a, t), s] \in C$. Therefore for any $u_1, u_2 \in U$ we have $[v_{p-1}(a, u_1), u_2] \in C$, which is easily shown by induction over the length of u_1 as a product in s and t. But then also $[u_1^p, u_2] \in C$, and therefore $U_1(U/U \cap C) \subseteq$ $Z(U/U \cap C)$. $U/U \cap C$ is also p-abelian, for let $u_1, u_2 \in U$, then

$$
(u_1u_2)^pv_{p-1}(a, u_1u_2)=(u_1u_2)^pv_{p-1}(a, u_1)[v_{p-1}(a, u_1), u_2]v_{p-1}(a, u_2)
$$

= $(u_1u_2)^p(u_1)^{-p}(u_2)^{-p}[v_{p-1}(a, u_1), u_2]\equiv 1 \bmod M_a\langle a^p\rangle$,

and hence $(u_1u_2)^p \equiv u_1^p u_2^p \mod C$.

Now (3.2) yields $c(U/U \cap C) \leq p-1$, and therefore $v_{p-1}(s, t) \in C$. Thus $v_{p-1,1}(s, t) \in M_a$, as required.

(3.8) THEOREM. Let G be a metabelian group of exponent p^2 , and let $1 \neq \alpha \in$ *A(G). Then* $c(G) \leq 2(p-1)+1$.

PROOF. Let first p be an odd prime. Then (3.1) will prove the statement, provided we can show that for arbitrary elements $x, y, z \in G$ the element $v_{p-1}(z, v_{p-1,1}(y, x))$ is equal to 1. In (3.7) we showed that $v_{p-1,1}(y, x) = v_{p-1}(a, w)$ for some $w \in G'$, $a \in G\backslash C_G(\alpha)$, and $v_{p-1}(a, w)$ is an element of G' of order 1 or p by (3.6i) for every $x, y \in G$. Therefore we are through, if $z \in G\setminus C_G(\alpha)$, since we can apply (3.4). If $z \in C_G(\alpha)$, put $U = \langle w, z \rangle$. Then $U/U₁(U)$ is a metabelian group of exponent p that is generated by two elements, and hence by ([9], Satz 3, p. 10) $K_p(U) \subseteq U_1(U)$. But $U_1(G) \subseteq U_1(Z(G)G')$ by (3.5ii), and so $v_{p-1}(z, w)$ is an element of G' of order 1 or p; therefore $v_{p-1}(z, v_{p-1}(a, w)) =$ $v_{p-1}(a, v_{p-1}(z, w)) = 1$ by (3.4), completing the proof.

For $p = 2$, we can even show $c(G) \le 2$, and don't even need the hypothesis that G is metabelian. Let $y \in C_G(\alpha)$, $x \in G \backslash C_G(\alpha)$ be arbitrary elements, then $xy \in G \backslash C_G(\alpha)$, and therefore $o(xy) = 4$, and $(xy)^{\alpha} = (xy)^3$. Thus $[y, x] = y^2$, since $x^2 = [x, \alpha] = [xy, \alpha] = (xy)^2 = x^2y[y, x]y$. Hence x induces the inverting automorphism on $C_G(\alpha)$, and $C_G(\alpha)$ is abelian. Furthermore the order of [y, x] is 1 or 2.

If $\exp(G/[G,\alpha])=2$, then $G'\subseteq [G,\alpha]\subseteq Z(G)$ and $c(G)\leq 2$. If $exp(G/[G,\alpha]) = 4$, then the Hughes H_2 -subgroup of $G/[G,\alpha]$ is nontrivial, and hence has index at most 2 in $G/[G,\alpha]$ by ([5], lemma 4, p. 664). Again $H_2(G/[G,\alpha])$ is covered by $C_G(\alpha)$, see (**), and so $C_G(\alpha)$ has index 2 in G. Therefore let $x \in G \backslash C_G(\alpha)$, then any nontrivial commutator in G has the form $[y, x]$ for some $y \in C_G(\alpha)$, and lies in $\Omega_1(C_G(\alpha))$. Since x inverts the whole of $C_G(\alpha)$, it centralises the elementary abelian group $G' \subseteq C_G(\alpha)$, and therefore $G' \subset Z(G)$, and $c(G) \leq 2$.

If the group G is generated by two elements, then the bound on the nilpotence class is a little better.

(3.9) THEOREM. *Let G be a two-generated metabelian group of exponent p2 and* $1 \neq \alpha \in A(G)$ *. Then* $c(G) \leq 2(p-1)$ *.*

PROOF. Since G is two-generated, and $\phi(G) \subseteq C_G(\alpha)$ by (1.3b) and (1.4), two cases must be considered.

(i) $C_G(\alpha)$ has index p in G. Then we can apply (3.5iii) immediately.

(ii) $\phi(G) = C_G(\alpha)$. Then, since the Hughes H_p -subgroup of $G/[G,\alpha]$ is covered by $C_G(\alpha)$, see (**), it has to be trivial by ([4], theorem, p. 451). Therefore $G/[G, \alpha]$ is a two-generated metabelian group of exponent p, and hence $K_p(G) \subseteq [G, \alpha] \subseteq Z(G)$, and $c(G) \leq p \leq 2(p-1)$.

The following case is noted separately.

(3.10) LEMMA. Let G be a metabelian group of exponent p^2 , $1 \neq \alpha \in A(G)$. If α is of type 2, but not quasi-universal, then $c(G)=p$.

PROOF. Since 1 does not occur in Σ_{α} , we must have $exp(C_G(\alpha))=p$, as $exp(G) = p^2$. Therefore $exp(G/[G,\alpha]) = p$, by (**), and for x, y $\in G$ we get $c(\langle x,y[G,\alpha]\rangle/[G,\alpha]) \leq p-1$ by ([9], Satz 3, p. 10). Thus $v_{p-1}(x,y) \in [G,\alpha] \subseteq$ $Z(G)$ and

 $[v_{v-1}(x, y), z] = v_1(z, v_{v-1}(x, y)) = 1$ for every $x, y, z \in G$.

Now (3.1) yields $c(G) \leq p$, and since α is not universal, we get $c(G) = p$ by (1.5).

(3.11) THEOREM. Let G be a metabelian group of exponent p^2 , and let $|A(G)| \geq p^2$. Then $c(G) = p$.

PROOF. Since the automorphism group of a cyclic subgroup of G is cyclic, $A(G)$ cannot be embeddable into Aut((x)) for any $x \in G$. Therefore G can not be a regular p-group by (1.5), and hence $c(G) \geq p$. Also, $C_G(A(G))$ is of index greater than p in G, because otherwise G would be generated by $C_G(A(G))$ and one further element $x \in G$, whence $A(G)$ would be embeddable into $Aut(\langle x \rangle)$ by restriction. But the Hughes H_p -subgroup $H_p(G/[G, A(G)])$ is covered by $C_G(A(G))$, see (**), and so by ([4], theorem) the group $G/[G, A(G)]$ must be of exponent p. Thus again $v_{p-1}(x, y)$ lies in $[G, A(G)] \subseteq Z(G)$ for any $x, y \in G$, and (3.1) gives $c(G) \leq p$.

(3.12) LEMMA. Let G be a metabelian group of exponent p^2 , $|A(G)| \geq p^2$, and let $\alpha \in A(G)$ be of type 2. Then α is quasi-universal, there are $p-1$ quasi*universal power automorphisms in A (G), and the rest of the nontrivial power automorphisms in* $A(G)$ has type p.

PROOF. Again $A(G)$ is elementary abelian and can not be embedded into Aut((x)) for any $x \in G$. Let $x \in G\setminus C_G(\alpha)$, and let $\beta \in A(G)\setminus\{\alpha\}$. Then for some integer *i*, the element *x* is centralised by $\alpha^{j} \beta$. Let $y \in G \setminus C_G(\alpha^{j} \beta)$, then $A:=\langle \alpha, \alpha^i \beta \rangle$ induces a group of power automorphisms on $U:=\langle x, y \rangle$ that is of rank two. By $(*)$ $\langle (xy)^p \rangle = \langle y^p \rangle$, and since $[xy, \alpha] = x^{ip}y^{mp} \in \langle (xy)^p \rangle = \langle y^p \rangle$ for some integers *i, m,* where $i \neq 0$ mod *p,* we get $\langle x^p \rangle = \langle y^p \rangle$. Therefore by (1.3) α induces a homomorphism from U into $\langle x^p \rangle$, the kernel of which is $C_{\mathcal{U}}(\alpha)$. Thus $C_v(\alpha)$ has index p in U, contains $\phi(U)$ properly and so α centralises some element $x^k y' \in U \setminus \phi(U)$. But $l \neq 0$ mod p, since $x \in U \setminus C_U(\alpha)$, and therefore $x^ky' \in U\setminus C_U(\alpha/\beta)$ has order p^2 . So α centralises some element of order $p^2 = \exp(G)$ and $1 \in \Sigma_{\alpha}$. Since α has type 2, it must be quasi-universal, and all the nontrivial powers of α are quasi-universal, too.

Let $z \in \langle x^k y' \rangle$ such that $z^p = x^p$. Since $x^q = x^{1+p}$, $i \neq 0 \mod p$, $z^q = z$ and α is quasi-universal, we get, for $1 \le r \le p$, $(xz')^{1+p} = (xz')^{\alpha} = (xz')x^{ip}$, and $(xz')^{p} =$ x^p . Because A induces a noncyclic group of power automorphisms on U, the element $z \in U$ is not fixed by β , so if $z^{\beta} = z^{1+\varphi}$, $x^{\beta} = x^{1+\varphi}$, then $s \neq 0$ mod p. For $1 \le r \le p$,

$$
(xz')^{\beta} = x^{1+tp}z'^{(1+sp)} = (xz')x^{p(t+rs)} = (xz')^{1+(t+rs)p},
$$

and since $(t + rs)$ takes p different values mod p, if r does, the type of β is at least p. But the type of β can not be greater than p by (1.4), since $exp(G) = p^2$.

Vol. 34, 1981 **FINITE** *p*-GROUPS 359

REMARK. For groups of exponent 4, a power automorphism of type 2 is always quasi-universal. For odd p however, there are metabelian groups of exponent p^2 that have a power automorphism of type 2 which is not quasiuniversal, as the following example will show. The smallest 2-group having a power automorphism of type 2 that is not quasi-universal is the generalised quaternion group of order 16 described in (2.2).

(3.13) EXAMPLE. Let p be an odd prime, and let $A =$ $\langle a_1 \rangle \times \langle a_2 \rangle \times \cdots \times \langle a_{p-1} \rangle$ be an abelian group with $o(a_1) = p^2$, and $o(a_i) = p$ for $2 \leq i \leq p-1$. Then the endomorphism T of A given by $a_i^T := a_i a_{i+1}$ for $1 \le i \le p-2$, and $a_{p-1}^T := a_{p-1}a_1^p$, defines an automorphism of A of order p for which the "norm endomorphism" $1 + T + T^2 + \cdots + T^{p-1}$ maps every element of A onto its $(2p)$ th power (see [8], III.10.15, Beweis, p. 334). We consider the extension G of A by T, where $T^p = a_1^{-2p}$.

Since the endomorphisms $1 + T^j + T^{j2} + \cdots + T^{j(p-1)}$ coincide on A for all the nontrivial powers T^{*i*} of T, we get for an arbitrary element $T^i a_i^i w \in G$, $w \in G'$:

$$
(T^j a_1^i w)^p = T^{ip} (a_1^i w)^{1+T^j+T^{j2}+\cdots+T^{j(p-1)}} = a_1^{p(2i-2j)} \quad \text{if } 1 \leq j \leq p-1,
$$

and $(a_1^i w)^p = a_1^{pi}$ for $T^j \in G'$. Put $H = \langle Ta_1, G' \rangle$, then H is a maximal subgroup of G, and by ([13], lemma 3, p. 42) G has an automorphism θ , defined by T^{θ} : = T^{1+p} , h^{θ} : = h for $h \in H$. θ is a power automorphism of G, and since $H = C_G(\theta)$ is of exponent p (*H* is a regular p-group generated by elements of order p), 1 does not occur in Σ_{θ} . Now

$$
(T^j a_1^i w)^{\theta} = (T^{j-i} T^i a_1^i w)^{\theta} = T^{(j-i)p} T^{j-i} T^i a_1^i w = (T^j a_1^i w) a_1^{p(2i-2j)},
$$

and so for $z \in A$ we have $z^{\theta} = z^{1+2p}$ and for $z \in G\backslash A$ we have $z^{\theta} = z^{1+p}$.

REMARK. The bounds given in (3.8) and (3.9) should be compared with the nilpotency class of the free *n*-generated metabelian group of exponent p^2 . This class was calculated by several authors according to $n = 2$, $3 \le n \le p + 1$, and $n \geq p + 2$ (see review of N. D. Gupta, *The free metabelian group of exponent p²,* MR 39 6984) and is $2p(p-1)$ for $n = 2$, and $n(p-1) + (p-1)^2$ for large n. So the existence of a nontrivial power automorsm is fairly restrictive for metabelian groups of exponent p^2 .

ADDITIONAL REMARK. It should be pointed out that the family of groups in (2.2) has already been constructed in section 6 of [All, and that [A2] assures the existence of more examples like those in (2.3).

REFERENCES

1. W. Brisley, *On varieties of metabelian p-groups and their laws,* J. Austral. Math. Soc. 7 (1967), *64-80.*

2. C. D. H. Cooper, *Power automorphisms o[a group,* Math. Z. 107 (1968), 335--356.

3. N. D. Gupta and M. F. Newman, *On metabelian groups,* J. Austral. Math. Soc. 6 (1966), 362-368.

4. G. T. Hogan and W. Kappe, *On the H_n-problem for finite p-groups*, Proc. Amer. Math. Soc. 20 (1969), 450-454.

5. D. R. Hughes, *Partial differences sets,* Amer. J. Math. 78 (1956), 650-674.

6. D. R. Hughes and J. G. Thompson, *The H_p-problem and the structure of H_p-groups*, Pacific J. Math. 9 (1959), 1097-1101.

7. B. Huppert, *Zur Sylowstruktur aufl6sbarer Gruppen,* Arch. Math. 12 (1961), 161-169.

8. B, Huppert, *Endliche Gruppen I,* Springer, Berlin-Heidelberg-New York, 1967.

9. H. Meier-Wunderli, *Metabelsche Gruppen,* Comment. Math. Heir. 25 (1951), 1-10.

10. Th. Meixner, *Eine Bemerkung zu p-Gruppen yore Exponenten p,* Arch. Math. 29 (1977), 562-565.

11. Th. Meixner, *Verallgemeinerte Exponenten yon Potenzautomorphismen~* Manuskript, Erlangen, 1978.

12. P. M. Weichsel, *On p-abelian groups,* Proc. Amer. Math. Soc. **18** (1967), 736-737.

13. J. H. Ying, *On finite groups whose automorphism groups are nilpotent,* Arch. Math. 29 (1977), 41-44.

A1. L. G. Kovacs, J. Neubiiser and B. H. Neumann, *On finite groups with "hidden" primes, J.* Austral. Math. Soc. 12 (1971), 287-300.

A2. G. E. Wall, *Secretive prime-powergroups oflarge rank,* Bull. Austral. Math. Soc. 12 (1975), 363-369.

FRIEDRICH-ALEXANDER-UNIVERSITAT

BISMARCKSTRASSE $1\frac{1}{2}$

D 8520 ERLANGEN, W. GERMANY