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POWER AUTOMORPHISMS OF 
FINITE p-GROUPS 

BY 

THOMAS MEIXNER 

ABSTRACT 

For a finite group G let A(G)  denote the group of power automorphisms, i.e. 
automorphisms normalizing every subgroup of (7. If G is a p-group of class at 
most p, the structure of A (G) is shown to be rather restricted, generalizing a 
result of Cooper ([2]). The existence of nontrivial power automorphisms, 
however, seems to impose restrictions on the p-group G itself. It is proved that 
the nilpotence class of a metabelian p-group of exponent p2 possessing a 
nontrival power automorphism is bounded by a function of p. The "nicer" the 
automorphism - -  the lower the bound for the class. Therefore a "type" for 
power automorphisms is introduced. Several examples of p-groups having large 
power automorphism groups are given. 

In the following, groups will always be  finite. We denote  by {Kj(G)}i~1 the 

descending central series of the group G, by c(G) the nilpotence class of G, and 

we define 

II,(G):=(xEG[x ~' =1) ,  13~(G):=(x~Glx=yP'forsomeyEG). 

For abbreviation let us put 

vt~(x,y):=[y,x,...,x,y,...,y] and v~(x,y):=Vto(x,y). 
t j 

A special part  is played by commutators  of length p, so define 

s, (x, y ) : =  Vtp-H(x, y). If G is a metabel ian group, we shall always use identities 

like (1) to (7) of [3], page 364. The  rest of the notation is taken f rom [8]. Of 

course, p will always denote  a prime number.  

1. Definition and well-known facts 

Let G be a group; an automorphism a of G is called a power  automorphism 

Received May 8, 1979 

345 



346 T. MEIXNER Israel J. Math. 

of G, if it maps every subgroup of G onto itself. Power automorphisms were 
studied by Cooper in [2]; we restate those results of his that we use frequently: 

(1.1) LEMMA. The set A ( G ) of power automorphisms of G is a normal abelian 
subgroup of Aut(G)  ([2], theorem 2.1.1, p. 337). 

(1.2) THEOREM. Let a E A ( G ) .  Then [a,/3] = 1 for every 13 E Inn(G) ([2], 
theorem 2.2.1, p. 339). 

(1.3) COaOLLARu Let a C A ( G ) .  Then 

(a) the map x ~ [ x ,  a ]  is a homomorphism from G into Z(G) ,  
(b) G' is fixed elementwise by a ([2], corollary 2.2.2, p. 339). 

Let G from now on always denote a p-group. We shall define what we call the 

type of a power automorphism of G, so let a ~ A (G). Then ot maps every cyclic 

subgroup of G onto itself, so for every x E G there is a positive integer rx such 

that x ~ = (x) ' .  These exponents r, of a will in general depend on the element 

x E G. If there is a set Ea of n positive integers such that for every x E G there 

is an r E E,  satisfying x " =  x', but no set of n -  1 positive integers has this 

property, then a is said to be of type n. It is clear that such minimal sets 2~ do 

exist, but even if we restrict ourselves to sets 2o C {1, 2 , . . . ,  e x p ( G ) -  1}, there 

are more than one minimal E~. Power automorphisms of type 1 are called 

universal; a power automorphism a of type 2 for which we can choose 
2a ---{1, r} is called quasi-universal. It was shown in [11] how to assign to every 

a E A ( G )  a unique set 2~ having the following properties: (i) 2~ _C 

{1, 2 , ' . . ,  exp(G) - 1}, (ii) 12o I = type of a, (iii) 2~ = {1, r}, if a is quasi-universal. 
So in the following let 5~o always have these three properties. Power 

automorphisms of an abelian group G are universal ([2], theorem 3.4.1, p. 343), 

and the restriction map gives an isomorphism from A ( G )  onto Aut((x)) for 

every cyclic subgroup (x) of G which is of maximal order. 

(1.4) LE~,tA. Let G be a non-abelian p-group, a ~ A(G) .  Then r --- 1 mod p 

[or every r E 2a, a stabilizes the series 1 C_ fl,( G ) C_ II2( G ) C "." C_ G, and A ( G ) 
is a p-group ([7], Hilfssatz 5, p. 166). 

(1.5) THEOREM. Let G be a regular p-group, then A (G) consists of universal 
power automorphisms only. Therefore via the restriction homomorphism A ( G ) is 
embeddable into Aut((x)) for every cyclic subgroup (x ) of G, that is of maximal 
order ([2], theorem 5.3.1, p. 349). 

REM~ag. Since every p-group of class less than or equal to p - 1 is a regular 
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p-group, the simplest class of p-groups not covered by (1.5) is the one of 

p-groups of class p. 

2. p-groups of class p 

(2.1) THEOREM. Let G be a p-group of class p. Then A (G)  is elementary 
abelian or can be embedded via the restriction homomorphism into Aut((x)) [or 
some cyclic subgroup (x ) o[ G, that is of maximal order. 

For p = 2, the rank of A (G)  is always at most 2. 

PRoof. Let G be of exponent pn, and let G '  be of exponent p~, then 
1 _-< k _-< n, since G is non-abelian. We have f lk(G)  C Co(A(G)); for let x E G 

be of order pk, then (x, G')  is a regular p-group, as its class is at most p - 1. Thus 

exp((x, G ' ) ) =  pk, and so by (1.5) and (1.3b) x is centralised by every power 

automorphism of G. 

Now if k = n, then G = f lk(O)C Co(A(G)); so A(G)  = 1. If k = n - 1, then 

[O,A(G)] C_[Ik(G)C_ Ca(A(G)) by (1.4) and so for x ~ G, ot ~ A (G) we have 

by (1.3a) 

Ix  p, - -  Ix ,  = Ix,  = 1 

whence A (G)  is elementary abelian. For p = 2, we can make use of one of 

Cooper 's  results ([2], theorem 6.3.1, p. 351) to conclude that the rank of A (G)  is 

at most two, since by [G, A (G), A(G)] = 1 we know that A(G)  and D(G) + (see 

[2], a remark on page 349) are isomorphic. 

So let finally k < n - 2, and assume that A (G)  ~ 1. Then direct application of 
the HaU-Petrescu Formula ([8], Satz 111.9.4, p. 317) gives that G is p n-l-abelian 

(see [12 9, and Iln_,(G) = {g E G [ gP'-' = 1}~G. Thus G can be generated by 
elements of order p n, and we can find an element x ~ G of order p", such that 

[x,a]~ 1 for at least one a E A ( G ) .  
Assume, by way of contradiction, that there is a nontrivial element/3 ~ A (G)  

with [x,/3] = 1. Then take y E G\Co(/3) of minimal order p ' ;  obviously s > k 

holds, and we first assume k < s < n. Since xy ~ Co (/3), we have 1 ~ [xy,/3] = 

[y,/3] ~ (xy) tq (y), and since G is p '- l-abelian,  we have 1 # x p'-' E (xy). As G is 

a p-group, we can conclude that (x) tq (y) # 1, and so there is an integer ], such 

that x jp'-~ = y-P'-'. Using the Hall-Petrescu Formula we get 

(xJ"'-'y~ ''-' = x~"'-'y ~'-' ~ d, t' 

where d~ E Ki((x p'-', y)); I don't  care about  the order of the product for a 
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moment. Since the class of G is p, since p'-~ divides (e;-') for 1 _-< i _-<p - 1 and 

p,-2 divides (e~-,) and since k _-< s -  1, we can write this equation 

(x'P'-'y ' '- '  = de Ke(<x y)). 

But the element de lies in the center of (7, and so it can be expanded into a 
product of p-fold commutators with entries x ~e'-" and y, of course always one 

entry (at least) equal to x ~e'-', and since n > s the element dp is equal to a pth  

power of an element of the commutator  subgroup of G, so 

' ' - ' =  1. 

But (xJe ' - 'y)E G\Co([3),  contradicting the minimality of s. So assume finally 

that n = s. Then there is an integer j such that x ~p'-' = y-e '- '  since (xy) rl ( y ) ~  1, 

and (x~y~ ' '- '  = xJ~"-'y p"-' = 1 since G is p"-~-abelian. But again xiy E G\Cc([3) ,  

contradicting the minimality of s. 

In the following we shall investigate whether (2.1) can be generalised in one 
direction or the other. First, we give a family of groups H~p, for which A (H~e) is 

neither elementary nor can be embedded by restriction into Aut((x)) for any 

element x E H,~ e. 

(2.2) EXAMP~. Let A,.e be an abelian p-group of rank p -  1 and type 

(n + 1, rg n , . . . ,  n), that is A,.e = (a~) x (as) • " "  x (ap_l) where a~ is of order 
p'+~ and a~ is of order p ~, if 2 _-< i _--< p - I. Then an endomorphism T of A~.e is 
defined by: 

ar:=a,a~+~ for l<--_i<--p-2, a~ +r+r ..... +r~- '= l .  

Obviously T is an automorphism of A,~p of order p, which has the property that 
for any integer i ~  0 mod p the endomorphism 1 + T i + (Ti)2 + - . .  + (T~y '-1 is 

identically zero on A,~p. The  extension G,~p of A~.p by T, where T p = a ~', is a 

p-group of maximal class, and A (G~p) is elementary abelian of rank 2, two 

linearly independent elements a, [3 E A ( G,~p ) given by a ~ = al, T ~ = T~+e; 
a t  = a~ +e', T ~ = T. 

It should be remarked that G ~  is a generalised quaternion group of order 2 ~ +2, 

and G~.e is Blackburn's example of an irregular p-group of class p, given in ([8], 

III.10.15). 

Let k, n always denote positive integers, Z[X] the integer polynomial ring, 
and nk (X) := y~f~l X '  E Z[X]. Then for any 1 < r < k we have nk (X) = 

n,(X)nk_,(XP') .  We often consider the ring Z[T] of endomorphisms of the 
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abelian group B, T ~ Aut(B),  which is commutative, and obviously, if o ( T ) =  

p~, ] # 0  mod p, then nk(T ~) = n~(T). 

PROPOSITION. Let B~p.~ be an abelian p-group o[ rank (p - 1)p k-' and type 

( n + 1, n, n, . . ", n ). Then B..,.E has an automorphism T~ o[ order p ~, such that the 
endomorphism n~(T ~) is zero on B,.~.~ for every j # O  mod p~. 

PROOF. Let B,.p.k=(bl)•215 . . .  x(btp_,~p,-,), where o ( b , ) = p  "+' and 
o(b~)=p" for 2<-_i<-(p-1)p k-~. We shall prove by induction over k the 

following, stronger fact: B,.p.k has an automorphism TE of order pk, satisfying (i) 

B~.k = (bZtT'J), (ii) b7 k t 'v= 1 for j # 0  mod pk. The case k = 1 was described 

above as (A~.p, T). To prove the induction, we embed B,.p.k into 

B..,.k§ = (b,.,,) x (b,.,) x . . .  x (bt.,-,) x (b2.,,) x . . .  x (b,p-l~p, ,.p-,) 

by identifying it with the subgroup /3~.p.k = (b~.,, I1 < i  < ( p -  1)p k-') of B,.p.,+l. 

(O(bl,o) = p"+' ,  and o(b~.j) = pn for (i,]) # (1, 0).) Then we can carry the action of 
Tk on B,.p.k over to /3~.,.k and define Tk§ on B,.p.k.~ by 

bTk +, ,., :=b,.~b,.j+, if l < i < ( p - 1 ) p  k-', 0 < ] < p - 1 ,  

bT~+, p ~.o :=b~.,T~ if l<=i<=(p-1)p k-l. 

This defines an endomorphism of BN.p.k+t, since the images of the generators b~.j 

have suitable orders, and obviously using the induction hypothesis, we get 
/lqZ[Tk+t] \ i.tf(Tk+=) 

B..p.k+~ = X,,l.0 /. But then, for ~,1.o E ker(Tk+l) we have 

1.0 I,O = u 1.0 , 

since Z[Tk+I] is commutative. On the subgroup /3,~p.k however, T~+I and TE 
coincide, and therefore some power T~'+I inverts T~+1 on /)~.~.k. Thus 

1 = v,.o~T'+'~ItT~+')tT'§ = b t~*+'~otL+'~wtz'§ = b ItT'*01.o ; 

and Tk+l is an automorphism of B~p.k+l. Clearly the order of Tk+l is p~+l. 
Now let j be a positive integer with j #  0 mod pk+l, let j = tp', where (t, p)  = 1. 

Then if r = 0, we get nk+t(T~+l)= nk+l(T~+l), whence 

1 = b "~§247176 b "§176  b "~L§247 1.0 ~ 1.0 ~ 1,0 

since nk(T[+t) = nk(T~) on /~=~.~, and we can apply the induction hypothesis. 
If r #  0, then 1 _-_ r _-< k, since j #  0 mod p~+l, and we have 

nk+,(T{+,) = nk+l(T['+~)= '-' ~'§ n , ( (T f+,y  )n,(T~+, ), 
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and again the induction hypothesis implies 

l, tnk((Tk+lP)pr-I)nl  (T~,~)  = b%*, tTk*d  ) 
1 ~  u 1.0 1,0 , 

since r - l ~ k - 1 .  
Now the statement of the proposition follows, as any of the generators of B,~p.k 

can be written bt~ tT~ by (i), and nk(T~) commutes with all the endomorphisms 

f (Tk ) .  

Let B : =  Bn... and T:=  T. E Aut(Bn.p.n) a pair with the properties from the 

proposition. 

Let B = (b,) • (b2) x . . .  x (b~p_,p.-,), and consider the extension of B by T 

where T p:" ' =  bf ~, call it H..p. 

Then any element of H . ,  can be written TJbitb with b COn(B).  But if j # 0  

mod p". then (TJb '~ b)  p" = T ip. (b ~ b)  ".tT~ = T ~p" by the properties of T. Therefore 

for every element x E H . , \ ( T P ' , B )  we have 1 # x  p" ~ (TP'). If j ---0 mod p", 

then TJb it b E ( T  p', B )  and if i # 0 mod p, 1 # (TJb it b)P" = b ~ E ( T  p" ). Therefore 

by 

bT:=b~,  T~:=T~+P'; and b~:=b~ § T a : = T  

two linearly independent power automorphisms of H~p are given. A (H,~p) has 

rank 2 and type (n, 1). 

We see that for n _-> 2, A (H..p) is not elementary abelian, and if p is odd, it cen 

not be embedded into the automorphism group of a cyclic group, since it is not 

cyclic itself. For p = 2 to be embeddable into Aut((x)) by restriction, A (H . , )  

would have to induce the inverting automorphism on (x). But since 

Ix, A(H,.p)] C_ (x 2~) this yields n = 1. 

The following two examples show that there are p-groups, the power 

automorphism group of which has rank 3. The second one is a 3-group of class 3; 

thus the bound 2 on the rank of A (G)  in (2.1) does not carry over to the case of 

odd primes. 

(2.3) EXAMPLES. (a) Let A = Ca) • (b) • (c) be an abelian group of order 16, 

such that a * = b ~ = c 2 = 1, and define automorphisms s, t of A by 

a~:=ab ,  b ' : = b a  2, c ' : = c ;  

a' := ac, b ' :=  ba 2, c ' : =  c a  2. 

Then both are automorphisms of order 4 of A, and t inverts s in Aut(A).  We can 
therefore extend A successively by s and t setting a 2 = $4 = t 4 and s' = s -~. The 
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extension G has order 2 ~ and class 3, and the automorphisms of G induced by 

the elements t 2, s2t 2 and bc generate an elementary abelian power automor- 

phism group of order eight. 
(b) Let A = (a) x (b) x (c) x (z) be an elementary abelian 3-group of order 34. 

Then A has an elementary abelian group of automorphisms (y, x, t) of order 33, 

where 

aY:=a, bY:=bz 2, CY:=cz 2, z Y : = z ;  

a~:=az 2, b~:=bz ~, c ' :=cz,  2~:=z; 

a':=a, b':=b, c ' :=cz  2, z ' :=z .  

If we extend A successively by y, x, and t, putting y3 = x 3 = t 3 = z, and [y, x] = a, 

[y, t] = c, [x, t] = b 2, we get an extension H of order 3 7 and class 3, and the power 

automorphism group A (H) is elementary abelian of order 3 3, generated by the 
automorphisms induced by the elements a, a2b, and abc 2. 

REMARK. AS indicated in the preceding examples, there is a general method 
to construct p-groups having non-universal power automorphisms. It is based on 

extending a group H of exponent pn, n > 1, by a cyclic p-group (y) such that the 

"norm map" (when H is abelian it is an endomorphism of H)  

x --~(x)Y"P-"(x) "''"-2'... (x)Y'(x) of yl on H 

maps every element x E H onto 1, if p does not divide i. This situation is very 

similar to the one with p-groups for which the Hughes He-subgroup is a proper 

subgroup (see [6], theorem 2, p. 1099); in fact, if yP = 1, the semidirect product 
of H by (y) will have this property. And indeed, for groups of exponent p2 there 

is a correspondence between groups possessing quasi-universal power au- 

tomorphisms and groups of Hughes type, if we use this expression for the not 

necessarily splitting extension of the group H of exponent p", n > 1, by the 

automorphism y of order p, such that the "norm maps" on H are trivial for all 

the nontrivial powers y' of y. 

(2.4) (a) Every group G o/exponent p2 which is of Hughes type has a central 
extension P possessing a quasi-universal power automorphism. 

(b) Every group G o/exponent p2 possessing a quasi-universal power au- 
toraorphism has a subgroup of Hughes type. 

PROOF. (a) Let y E G and H C G of index p, such that G = (y, H)  is of 
Hughes type. Then, if the extension is non-split, we have (y) t" lH = (yP)_C 
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Z(G) ,  and by yS:= y,§ h0:= h for h • H an automorphism 0 of G is defined 

([13], lemma 3, p. 42), which satisfies (y 'h)  ~  y'hy ~p= y'h(y~h) ~ for every 

element y~h E G \ H  by the properties of y. Therefore, since H is of exponent p2, 

0 is quasi-universal with ~o = {1, 1 + p}. 

If yP = 1, define P to be the extension of H by a cyclic group of order p2, ix), 

such that x acts on H in the same way as y does, and that the extension splits. 

Then (x p) C Z(P),  and P/(x p) ~- G, so P is a central extension of G. And again 

the setting x~ = x ~§ h " : =  h for h E(xPH) defines a quasi-universal power 

automorphism on P. 

(b) Let G be a group of exponent p2, and let a E A ( G )  be quasi-universal. 

Then for some nontrivial power /3 of a we can choose Y.~ = {1, 1 +p}. Let 

y E G\Cc(/3), and put U:=  (y, C~(/3)). Then for every element y'h ~ U\Cc(/3) 
we have ( y ' h ) P = [ y ~ h , / 3 ] = [ y ' , / 3 ] = y  ~p, since /3 is quasi-universal, so 

(h)Y"P-')(h y'P' -" �9 �9 - (h)Y' (h) = 1 and since y p E II~(Z(G)) C Cc (/3), we have that 

y 'h E U\C6(/3) is equivalent to i ~ 0  rood p, and so U is of Hughes type, as 

exp(C~(/3)) = p2 (otherwise /3 would be universal). 

3. Metabelian groups of exponent p2 

In this third section we shall consider the question, whether the existence of a 

nontrivial power automorphism imposes restrictions on the nilpotence class of 

the p-group G. The procedure is motivated by (1.4), which stated: If G is a 

group of exponent p, which has a nontrivial power automorphism, then G is 
abelian. 

In the following, we shall answer the question for metabelian groups of 

exponent p2. Thereby we make use of a result of Gupta and Newman ([3], 

theorem, p. 362), but only in the following specialisation: 

(3.1) THEOREM. Let G be a metabelian p-group, and let i,j,k be positive 
integers strictly smaller than p. Then c(G)<= i + j + k - 1, provided 

vk(z, v j . , - ~ ( y , x ) ) = [ x , y , ' " , y , x , " ' , x . z , ' " , z ] = l  forevery x,y, z E G .  
j d - t  k 

PROOF. Since by hypothesis the above word holds in G, [3] tells that the 

exponent of Kj§247 divides (i !)(j l)(k !). But since i,j and k are 

strictly smaller than p, none of the factorials i !, j !, or k I is divisible by p, so the 

p-group K~.~§ (G)/K~.j+k.,(G) is trivial, and since G is a finite nilpotent group, 
we get K~+j+k (G) = K~§ = 1. 

For later reference we also need the following lemma, which is presumably 
well-known. 
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(3.2) LEMMA. Let G = ( x , y )  be a metabelian p-group, and let DI(G)C_ 

Z(G).  I[ G is p-abelian, then c(G)<=p -1 .  

PROOF. Since G is p-abelian, and since D~(G)C_Z(G), the map z ---~z p is a 

homomorphism from G into Z(G),  so exp(G')  ~ p. Since by ([9], Satz 3, p. 10), 
c(G/Z(G))<-_p-  1, we have c(G)<=p, and so ([10], Hilfssatz 3, p. 563) gives 

IlP,21 s,(v,w) ( - ' =  1 for every v, w E G, as G is p-abelian. But now ([10], 

Hilfssatz 2, p. 562) which is a special case of ([1], lemma 1, p. 65) tells that 
s,(x, y) = 1 for t =< i = p - 1, and by ([10], Hilfssatz 1, p. 562) we get the result. 

(3.3) LEMMA. Let G be a metabelian group of exponent p2, and let 1 ~ a E 

A (G) be universal. Then 
(i) every two-generated subgroup o[ G has class at most p - 1, 

(ii) G is a regular p-group, 

(iii) c(G)<=p. 

PROOF. For some nontrivial power/3 of a we may assume ~ = {1 + p}, and 
so by (1.3a) G is p-abelian and ~31(G)C_Z(G). Thus by (3.2) every two- 

generated subgroup of G is of class at most p - 1, and hence regular. Regularity, 

however, is a property that is checked on two elements, and so G is a regular 

p-group (see also [12], lemma 1, p. 736). Finally, since vp_l(y, x) E Kp((x, y)) = 1 

for every two elements x, y ~ G, we also have v,(z, vp_,(y, x)) = [vp-~(y, x), z] = 1 

for every x,y ,z  ~ G. Now (3.1) tells c(G)<-_p. 

If the power automorphism ot of G is not universal, we have to consider 
subgroups (x, y) of G, where y is fixed by a, while x is not. The easiest case is the 

following one. 

(3.4) LEMMA. Let O be a metabelian group of exponent p2, and let 1 ~ a E 
A(G) .  Let x E G\C~(a), and v ~ G' of order p. Then c((x, v))<~p - I. 

PROOF. Let U : =  (x, v), then since G is metabelian and v p =  1, we have 
and K~(U)=(v,_,(x,v),K~§ Thus [xv, a ] = [ x , a ] ~ ( x P ) C  exp(U')  = p, 

Z ( G )  gives 

P 

1 = Iv, = l-I  v , (x ,  v),;, = vAx, v), 
i = 1  

so c(U)<-p, and we can use ([10], Hilfssatz 3) to get 

(x'vy ' = x'Psp_~(x ~, v) '-'~-' -- xJ~sp_~(x, v) '-j~*-' = x jp . sp_~(x, v) for every integer 

l<=i<-p-1 .  
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Therefore ([xv, a])  = ((xv) p) gives se_,(x, v)E(x") ,  and since for 1 =<j ~ p  - 1 

we have x~v E G\Ca(a) and so (xJv)P r 1, we conclude sp_,(x, v) = 1. 

Now we treat the general case. Again, we make use of the fact that for 

x,y ~ G, where G is a metabelian group of exponent p2, 1~ a C A ( G )  and 

x E G\CG(a), y E Co(a), we have 

(*) ((xJy)P)=([xJy, a])=([xJ, a])=(xP)C_Z(G) f o r l = j = < p - 1 .  

(3.5) LEMMA. Let G be a metabelian group o[ exponent p2 and 1 ~ a E 
A(G) .  Let U : =  ix, y)_C G, where x ~ G\Co(a)  and y E Co(a). Then 

(i) D,(Km(U))C__Km+p_,(U)(x p) for every m >=2, 
(ii) & (x, y) ~ Kp+,(U) (x ~ ) [or 1 <= i <= p - 2, y Psp_,(x, y) E Kp+ 1(U) ix p ), 
(iii) c (U)  __< 2(p - 1). 

PROOF. Since U is a nilpotent group, DI(K,,(U))_C K,.§ p) for suffi- 

ciently large m. So let k be the minimal integer for which this relation holds, and 

assume by way of contradiction that k > 2. Let v E Kk-I(U) be an element of 

order p'~, then we can easily show by induction that Kj((x, v))C_ Kj+~k-,-~(U) for 

j=>2, so K~((x,v))C_K(k-,+p-l(U). By hypothesis we have Ol((x,v)')_C 

D~(Kk (U))_C K~+,,_~(U)(x"), so the Hall-Petrescu Formula tells x~v ~ = (xv) p 
rood Kk_,+p_,(U)(x p) and by (*), since by hypothesis v E K2(U) C_ Co(a), we get 

v ~ E Kk_,+p_,(U)(x~), contradicting the minimality of k. By (i) and (*) we get 

from ([10], Hilfssatz 3) 
p--I  

yPl-I &(xJ, y) (-~ =lmodKp+,(U)(x ~) for l<=j<=p-1. 
i = l  

But instead of using ([10], Hilfssatz 2) like in (3.2) we must go back to Brisley's 

theorem now. 
Put g~(x j, y) := &(x j, y)(-"  for 1 = i =< p - 2, and gp_,(x j, y) := yPsp_,(x j, y). 

Then we have for 1 ~ j _-< p - 1 
p - 1  

l-I g,( x j, Y) = 1 mod K,+,(U)(xP). 
i = l  

Since the elements s~ (x j, y) are central mod Kp+~(U)(x e), the elements g~ (x j, y) 

do commute mod Kp+~(U)(x p) and we have 

g~(x',y)-=g~(x,y) j' modKp+~(U)(xP), l<=i,j<=p-1. 

Therefore we can apply ([1], iemma 1, p. 65) to get (ii). Kp(U) is spanned mod 

Kp§ by the .elements s,(x,y), since U is metabelian, and so Kp(U)C 

(y", x", K,+,(U)). Thus 
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[r~(u), y] c_ [<y~, x ~, K~+,(u)), y] c_ K~+~(u), 

and since U is metabelian, we get y E Ct,(Kj(U)/K~+~(U)) for every i >p.  So 

K,(U) = (v,_~(x, yP),K,+I(U)) for i >p.  Since ye E (x ", U') and is an element of 
order at most p, the elements x and yP lie in a subgroup of G that is generated 
by x and an element of order p in G', and so (3.4) yields v,_l(x,y p) = 1. 
Therefore K2p_I(U) = K2p(U)= 1, and (iii)holds. 

For the proof of the main result in this section we need one more definition. If 
a E G, we denote by M, the set {vp_~(a, w)l w E G'}. 

(3.6) LEf~,tA. Let G be a metabelian group o[ exponent p 2, 1 ~ a E A ( G ) and 
a E G\Co(a).  Then 

(i) Mo is an elementary abelian normal subgroup o[ G, 
(ii) i[ y E Co(a), and U:=(y,  a), then Kp+I(U)CM~. 

PROOF. The set Ma is a subgroup of G; for, since G is metabelian, 

vp-l(a, wOv~-~(a, w2)=vp_~(a,w~w2) if wt, w2EG' .  Of course, M~C_G' is 
abelian, and since 

(v~_~(a, w))  s = V~-l(a, w ~) for  w ~ G ' ,  g ~ G, 

Ma is a normal subgroup of G. 

Let vp-~(a, w ) ~  Mo. Then, since by (3.5) the class of (a, w) is at most 2p - 2 ,  
we know that c((a, vp_~(a, w))) _-<p - 1, and Ca, vp_~(a, w)) is a regular subgroup 

of G. Therefore the (nontrivial[) restriction of a on Ca, vp_~(a, w)) is universal, 

and vp-l(a, w f  = 1. 
To prove (ii), let y E Co(a), and put U:= (a, y). Then by (3.5ii), Kp(U)(a p) = 

(sp-l(a, y), a ~, Kp+I(U)), and y E Co ( ~  (U)/K,+2(U)) for i > p, and so for i > p 

K~(U) = (v~-~(a,y), K~+~(U)), and Kp+~(U) = (v~_~(a,y) [ i > p )  = 
(vp_~(a, v~_p(a, y))[i  > p), which is a subgroup of Mo. 

(3.7) LEMMA. Let G be a metabelian group of exponent p 2, 1 ~ a E A ( G) and 
s, t E G. Then there is an element a E G\Co(a)  such that V~-Lt(S, t)CM~. 

PROOf. If s E Co(a) and t E G\Co(a),  then vp-Ll(s, t) is in Mr, by (3.6ii); and 

if t E Co(a) and s ~ G\Co(a) then v,_~.~(s, t ) ~  M~ by (3.6ii). 

If s, t ~ G\Co(a),  then consider the group G/[G, a]. If exp(G/[G, a ] ) = p ,  

then is, t, [G, a])/[G, a] is a two-generated metabelian group of exponent p, and 

has therefore at most nilpotence class p -  1 by ([9], Satz 3, p. 10). But since 
[G, a] C Z(G),  we get V~-l(S, t) ~ Z (G)  and Oo-L~(S, t) = 1. If exp(O/[G, a]) = 

p~, then the Hughes subgroup Hp(G/[G, a]) of G/[G, a] is nontrivial and can by 

([4], theorem, p. 451) only be of index 1 or p in G/[G, a]. We prove that 
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for any nontrivial subgroup X of A (G) the Hughes 
(**) 

subgroup Hp(G/[G, X]) of G/[G, X] is covered by CG (X). 

Hp(G/[G, X]) is generated by the cosets b[G, X] of order p2 in G/[G, X], that 

is, cosets b[G, X] for which b p ~ [(3, X]. But if there was an element/3 of X not 

centralising b, we would have (b p) = ([b,/3]) C [b, X] _C [G, X], so b E Co(X). 
Since [G, a] _C Co(a), and since or# l ,  we must have Hp(G/[G,a])= 

C6(a)/[G, a] and lG/Cc(a)[ =p. Thus t=  sc for an element c ~ Ca(a) and 

v~_,.,(s, t) = v~_,.,(s, sc) ~ K~+,((s, c)) c_ M,. 
Let finally s, t ~ CG(a). Then put U: = (s, t)C_ G, choose an arbitrary element 

a E G\Co(a) and put V:= UM,(aP), C:=Cv(V/M~). By (3.5ii) we have 
u'vp_~(a, u) ~ Mo(a p) for every u E U, and since [vp-l(a, s), t] =- [vp_,(a, t), s] 
rood Me, we have 

[v~-,(a,  s) ,  t, s]  = [v._,(a, s),  s, t] ~ Ma, 

[v~_,(a, s), t, t] - [v~-,(a, t), s, t] =- [v~_,.,(a, t), s] - 1 rood Me, 

and so [v~_~(a, s),t], [vp-~(a, t),s] ~ C. Therefore for any u~, u2E U we have 

[vp-~(a, u,), uz] E C, which is easily shown by induction over the length of u, as a 
product in s and t. But then also [u~, Uz]E C, and therefore U , ( U / U N  C)C_ 
Z ( U / U  N C). U /U  N C is also p-abelian, for let u,, uz E U, then 

(u,u2)%_,(a, u,u2) = (u,u~)%_,(a, u,)[v~_,(a, u,),  u~lv._,(a, u2) 

= (u,u2)~(u,)-P(u2)-"[v,_,(a, u,), uz] = 1 rood Me(a"), 

and hence (u~uz) ~ ~ u~u2 p " rood C. 
Now (3.2) yields c ( U / U  N C ) < p  - 1, and therefore vp_~(s, t )E  C. Thus 

vp-,a(s, t) E Ma, as required. 

(3.8) TH~oPa~M. Let G be a metabelian group o[ exponent p 2, and let 1 ~ ot E 
A(G) .  Then c ( G ) < 2 ( p - 1 ) + 1 .  

PROOF. Let first p be an odd prime. Then (3.1) will prove the statement, 

provided we can show that for arbitrary elements x, y, z E G the element 
v~_~(z, vp-,.,(y, x)) is equal to 1. In (3.7) we showed that vp-,a(y, x) = v~_,(a, w) 
for some w E G', a E G\Co(ot), and vp-~(a, w) is an element of G'  of order 1 or 

p by (3.6i) for every x, y E G. Therefore we are through, if z E G\Ca(a), since 
we can apply (3.4). If z E Co(a), put U:= (w, z). Then U/U,(U) is a metabelian 
group of exponent p that is generated by two elements, and hence by ([9], Satz 3, 
p. 10) Kp(U)C_ I3~(U). But I3~(G)C_ I3,(Z(G)G') by (3.5ii), and so vp-,(z, w) is 
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an element of G'  of order 1 or p; therefore vp_l(z, vp_l(a,w)) = 
vp-l(a, vp_~(z, w)) = 1 by (3.4), completing the proof. 

For p = 2, we can even show c(G)=<2, and don't even need the hypothesis 

that G is metabelian. Let y E C6(a), x E G\Co(a) be arbitrary elements, then 

xy E G\Co(a), and therefore o(xy)=4, and (xy) a =(xy) 3. Thus [y,x]=y 2, 
since x 2 = [x, a] = [xy, a]  = (xy) 2 = x2y[y, x]y. Hence x induces the inverting 

automorphism on Co(a), and Co(a) is abelian. Furthermore the order of [y, x] 

is 1 or 2. 
If exp(G/[G,a])=2, then G'C_[G,a]C_Z(G) and c(G)---2. If 

exp(G/[G, a]) = 4, then the Hughes H2-subgroup of G/[G, a] is nontrivial, and 

hence has index at most 2 in G/[G,a] by ([5], lemma 4, p. 664). Again 

H2(G/[G,a]) is covered by Co(a), see (**), and so Co(a) has index 2 in G. 

Therefore let x ~ G\Co(a), then any nontrivial commutator in G has the form 

[y, x] for some y E Co(a), and lies in f~l(Co(a)). Since x inverts the whole of 

Co(a), it centralises the elementary abelian group G'C C~(a), and therefore 

G'CZ(G),  and c(G)_-<2. 

If the group G is generated by two elements, then the bound on the nilpotence 

class is a little better. 

(3.9) THEOREM. Let G be a two-generated metabelian group of exponent p2 
and I ~ a ~ A ( G ) .  Then c ( G ) = 2 ( p - 1 ) .  

PROOF. Since G is two-generated, and ~b(G)CC~(a) by (1.3b) and (1.4), 

two cases must be considered. 
(i) Co(a) has index p in G. Then we can apply (3.5iii) immediately. 
(ii) ~b(G)= Co(a). Then, since the Hughes Hp-subgroup of G/[G,a] is 

covered by Co(a),  see (**), it has to be trivial by ([4], theorem, p. 451). 

Therefore G/[G, a] is a two-generated metabelian group of exponent p, and 

hence Kp(G) C [G, a] C Z(G), and c(G) <- p <= 2(p - 1). 

The following case is noted separately. 

(3.10) LEMMA. Let G be a metabelian group of exponent p2, 1 ~ a E A (G). If 
a is of type 2, but not quasi-universal, then c(G)=p. 

PROOF. Since 1 does not occur in E,, we must have exp(Co(a))=p, as 

exp(G) =p2. Therefore exp(G/[G,a])=p, by (**), and for x, y ~ G we get 

c((x,y[G, al)/[G,a])<-_p-1 by ([9], Satz 3, p. 10). Thus Op_,(x,y)E[G,a]C 
Z(G) and 

[v~_,(x,y),z]=v,(z,v~_~(x,y))=l foreveryx, y, z E G .  
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Now (3.1) yields c(G) <-_ p, and since ot is not universal, we get c(G) = p by (1.5). 

(3.11) THEOREM. Let G be a metabelian group of exponent p2, and let 
IA(G)l>=p 2. Then c (G)=p.  

PROOF. Since the automorphism group of a cyclic subgroup of G is cyclic, 

A (G) cannot be embeddable into Aut((x)) for any x ~ G. Therefore G can not 

be a regular p-group by (1.5), and hence c(G)>p.  Also, Cc(A(G)) is of index 

greater than p in G, because otherwise G would be generated by Cc (A (G)) and 

one further element x E G, whence A (G) would be embeddable into Aut((x)) 

by restriction. But the Hughes Hp-subgroup He(G/[G,A(G)]) is covered by 

C6 (A (G)), see (**), and so by ([4], theorem) the group G/[G, A (G)] must be of 

exponent p. Thus again vp_l(x, y) lies in [G, A (G)] C_ Z(G)  for any x, y ~ G, and 

(3.1) gives c(G)<-_p. 

(3.12) LEMMA. Let G be a metabelian group of exponent p2, I A (G)I >= p2, and 
let a C A ( G )  be of type 2. Then a is quasi-universal, there are p - 1  quasi- 
universal power automorphisms in A (G), and the rest of the nontrivial power 
automorphisms in A ( G ) has type p. 

PROOF. Again A ( G )  is elementary abelian and can not be embedded into 

Aut((x)) for any x E G. Let x E G\C~(a), and let /3 EA(G) \ ia ) .  Then for 

some integer j, the element x is centralised by aJfl. Let y E G\C6(aJ/3), then 

A: = (a, a J/3) induces a group of power automorphisms on U:= ix, y) that is of 

rank two. By (*) i ( x y f ) =  iyP), and since [xy, a]  = xlPy mp E i(xy) v) = iY") for 

some integers i, m, where i ~ 0  rood p, we get (x p) = (yP). Therefore by (1.3) a 

induces a homomorphism from U into (xP), the kernel of which is Cu(a). Thus 

Cv(ct) has index p in U, contains th(U) properly and so a centralises some 

element xky~E U\d~(U). But l ~ 0  rood p, since x ~ U\Cu(a), and therefore 

xky~E U\Cv(aJ/3) has order p2. So a centralises some element of order 

p2 = exp(G) and 1 E E,. Since a has type 2, it must be quasi-universal, and all 

the nontrivial powers of a are quasi-universal, too. 

Let z ~ ix ky~) such that z" = x p. Since x ~ = x I+'P, i ~  0 mod p, z ~ = z and a is 

quasi-universal, we get, for 1 =< r =< p, (xz')  ~§ = (xz') ~ = (xz')x 'p, and (xz') p = 
x p. Because A induces a noncyclic group of power automm-phisms on U, the 

element z E U is not fixed by/3, so if z a = z ~+'~, x ~ = x "P, then s ~  0 mod p. For 

l~r<=p, 
( x z ' )  ~ = x ' + " z  " " ' ~ '  = ( x z ' ) x  ~ . . . .  ~= ( x z ' )  '+~ . . . .  ~, 

and since (t + rs) takes p different values rood p, if r does, the type of/3 is at least 

p. But the type of/3 can not be greater than p by (1.4), since exp (G)=  p~. 
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REMARK. For groups of exponent 4, a power automorphism of type 2 is 

always quasi-universal. For odd p however, there are metabelian groups of 

exponent p2 that have a power automorphism of type 2 which is not quasi- 

universal, as the following example will show. The smallest 2-group having a 

power automorphism of type 2 that is not quasi-universal is the generalised 

quaternion group of order 16 described in (2.2). 

(3.13) EXAMPLE. Let p be an odd prime, and let A = 

(al) x (a2) x . . .  • (ap-1) be an abelian group with o(a l )  = p2, and o(a,) = p for 

2 < = i < = p - 1 .  Then the endomorphism T of A given by a~:=a,a,+~ for 
T 1 =< i _-<p - 2 ,  and ap-~ := a,_~a~, defines an automorphism of A of order p for 

which the "norm endomorphism" 1 + T + T 2 + �9 �9 �9 + T p-~ maps every element 

of A onto its (2p)th power (see [8], III.10.15, Beweis, p. 334). We consider the 

extension G of A by T, where T p = a ~2p. 

Since the endomorphisms 1 + T j + T j2 + �9 �9 �9 + T j("-" coincide on A for all the 

nontrivial powers T' of T, we get for an arbitrary element TJa 'tw E G, w E G':  

(T,a,w)p~ = TJP(a~w)~+TJ+~, ...... T,,p , =  af(2,-2j) if 1 =<j _--<p - 1, 

pi Tj and (a~w ~' -- a~ for E G'.  Put H:  = (Ta~, G ), then H is a maximal subgroup 

of G, and by ([13], lemma 3, p. 42) G has an automorphism 0, defined by 

T ~  ~§ h ~  for h E H .  0 is a power automorphism of G, and since 

H = Co(O) is of exponent p (H is a regular p-group generated by elements of 

order p), 1 does not occur in ~0. Now 

(TJa~lw) ~ = (TJ- 'T 'a ' lw)  ~ = T~-,) ,TJ-,T,a~ w = (TJa~lw)a~(2'-2J~, 

and so for z C A  we have z ~ ~-z l+2p and for z E G \ A  we have z ~ = z  '+". 

REMAINS:. The bounds given in (3.8) and (3.9) should be compared with the 

nilpotency class of the free n-generated metabelian group of exponent p2. This 

class was calculated by several authors according to n = 2, 3 =< n =< p + l, and 

n _-> p + 2 (see review of N. D. Gupta, The free metabelian group of  exponent  p2, 

MR 39 6984) and is 2p(p - 1) for n = 2, and n(p - 1) + (/9 - 1) 2 for large n. So the 

existence of a nontrivial power automorsm is fairly restrictive for metabelian 

groups of exponent p~. 

ADDITIONAL REMARK. It should be pointed out that the family of groups in 

(2.2) has already been constructed in section 6 of [All,  and that [A2] assures the 

existence of more examples like those in (2.3). 
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