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POWER AUTOMORPHISMS OF
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ABSTRACT

For a finite group G let A (G) denote the group of power automorphisms, i.e.
automorphisms normalizing every subgroup of G. If G is a p-group of class at
most p, the structure of A (G) is shown to be rather restricted, generalizing a
result of Cooper ([2]). The existence of nontrivial power automorphisms,
however, seems to impose restrictions on the p-group G itself. It is proved that
the nilpotence class of a metabelian p-group of exponent p* possessing a
nontrival power automorphism is bounded by a function of p. The “nicer” the
automorphism — the lower the bound for the class. Therefore a “type” for
power automorphisms is introduced. Several examples of p-groups having large
power automorphism groups are given.

In the following, groups will always be finite. We denote by {Ki(G)}iz: the
descending central series of the group G, by ¢(G) the nilpotence class of G, and
we define

X%(G):=(x€CG Ix"' =1, U(G):=(x€CG |x = y? for some y € G).
For abbreviation let us put

v, (x, Y):=[y’x’ CHX% Yt YI and u(x, Y):=vi,0(x’ Y)
i j

A special part is played by commutators of length p, so define
5i(%,y):=v,-i-1(x, ). If G is a metabelian group, we shall always use identities
like (1) to (7) of [3], page 364. The rest of the notation is taken from [8]. Of
course, p will always denote a prime number.

1. Definition and well-known facts
Let G be a group; an automorphism a of G is called a power automorphism
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of G, if it maps every subgroup of G onto itself. Power automorphisms were
studied by Cooper in [2]; we restate those results of his that we use frequently:

(1.1) LemMa. The set A(G) of power automorphisms of G is a normal abelian
subgroup of Aut(G) ([2], theorem 2.1.1, p. 337).

(1.2) THEOREM. Let @ € A(G). Then [a,B] =1 for every B € Inn(G) ([2],
theorem 2.2.1, p. 339).

(1.3) CoroLLARY. Let @ € A(G). Then
(a) the map x — [x, a] is a homomorphism from G into Z(G),
(b) G’ is fixed elementwise by a ([2], corollary 2.2.2, p. 339).

Let G from now on always denote a p-group. We shall define what we call the
type of a power automorphism of G, so let @ € A (G). Then a maps every cyclic
subgroup of G onto itself, so for every x € G there is a positive integer r, such
that x* = (x)™ These exponents r, of a will in general depend on the element
x € G. If there is a set 2, of n positive integers such that for every x € G there
is an r €%, satisfying x* = x’, but no set of n —1 positive integers has this
property, then a is said to be of type n. It is clear that such minimal sets 3, do
exist, but even if we restrict ourselves to sets 3, C{1,2, - -,exp(G)— 1}, there
are more than one minimal X.. Power automorphisms of type 1 are called
universal; a power automorphism a of type 2 for which we can choose
3. ={1,r} is called quasi-universal. It was shown in [11] how to assign to every
a € A(G) a unique set 2, having the following properties: (i) X, C
{1,2,---,exp(G) — 1}, (ii) | 2. | = type of a, (iii) 2. ={1, r}, if @ is quasi-universal.

So in the following let %, always have these three properties. Power
automorphisms of an abelian group G are universal ([2], theorem 3.4.1, p. 343),
and the restriction map gives an isomorphism from A (G) onto Aut{(x)) for
every cyclic subgroup (x) of G which is of maximal order.

(1.4) LemMa.  Let G be a non-abelian p-group, a € A(G). Thenr =1 mod p
for every r € 3., a stabilizes the series 1 C A(G)CQ(G)C -+ C G, and A(G)
is a p-group ([7], Hilfssatz 5, p. 166).

(1.5) THEOREM. Let G be a regular p-group, then A(G) consists of universal
power automorphisms only. Therefore via the restriction homomorphism A (G) is
embeddable into Aut((x)) for every cyclic subgroup (x) of G, that is of maximal
order (2], theorem 5.3.1, p. 349).

REMARK.  Since every p-group of class less than or equal to p — 1 is a regular
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p-group, the simplest class of p-groups not covered by (1.5) is the one of
p-groups of class p.

2. p-groups of class p

(2.1) THEOREM. Let G be a p-group of class p. Then A(G) is elementary
abelian or can be embedded via the restriction homomorphism into Aut({x)) for
some cyclic subgroup (x) of G, that is of maximal order.

For p =2, the rank of A(G) is always at most 2.

ProoF. Let G be of exponent p”, and let G’ be of exponent p“, then
1=k = n, since G is non-abelian. We have Q. (G)C Cc(A(G)); forlet x€G
be of order p*, then (x, G') is a regular p-group, as its class is at most p — 1. Thus
exp({x, G’)) = p*, and so by (1.5) and (1.3b) x is centralised by every power
automorphism of G.

Now if k = n, then G =L (G)C Cs(A(G));s0 A(G)=1.1f k =n —1, then
[G, A(G)]CQ(G)C Cs(A(G)) by (1.4) and so for x € G, a € A(G) we have
by (1.3a)

[x%, @) =[x, a) =[x, a’]=1

whence A(G) is elementary abelian. For p =2, we can make use of one of
Cooper’s results ([2], theorem 6.3.1, p. 351) to conclude that the rank of A (G) is
at most two, since by [G, A(G), A(G)} =1 we know that A (G) and D(G)" (see
[2], a remark on page 349) are isomorphic.

So let finally k = n ~2, and assume that A (G) # 1. Then direct application of
the Hall-Petrescu Formula ([8), Satz I11.9.4, p. 317) gives that G is p"~'-abelian
(see [12]), and 2, .(G)={g €G Ig”"" =1}2G. Thus G can be generated by
elements of order p", and we can find an element x € G of order p”, such that
[x, @] # 1 for at least one @ € A(G).

Assume, by way of contradiction, that there is a nontrivial element 8 € A(G)
with [x, B] = 1. Then take y € G\Cs(B) of minimal order p*; obviously s >k
holds, and we first assume k <s < n. Since xy & Cs (B8), we have 1 # [xy, B] =
[y, Bl1E€ (xy) N (y), and since G is p"'-abelian, we have 1 # x*" € (xy). As G is
a p-group, we can conclude that {x) N (y)# 1, and so there is an integer j, such
that x#"” =y, Using the Hall-Petrescu Formula we get

p:—l s—1
(xipn—sy)Pl—l - xipn—lypa—l n di (P )

i=2 !

where d; € Ki((x*" 7, y)); I don’t care about the order of the product for a
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moment. Since the class of G is p, since p*~ divides (*; ') for 1=i=p—1 and
p*~? divides (*,”') and since k <5 —1, we can write this equation

(xjpn-')’ )‘”~l = &:hza d-p EK,((x"7, y)).

But the element d, lies in the center of G, and so it can be expanded into a
product of p-fold commutators with entries x*" and y, of course always one
entry (at least) equal to x”", and since n > s the element d, is equal to a pth
power of an element of the commutator subgroup of G, so

@Yy =1

But (x*”"y) € G\Cs(B), contradicting the minimality of s. So assume finally
that n = s. Then there is an integer j such that x*"' = y """ since (xy) N (y) # 1,
and (x'y)""' = x*""'y?""' = 1 since G is p"~"-abelian. But again x’y € G\Cs(B),
contradicting the minimality of s.

In the following we shall investigate whether (2.1) can be generalised in one
direction or the other. First, we give a family of groups H.,, for which A (H,,) is
neither elementary nor can be embedded by restriction into Aut((x)) for any
element x € H,,.

(2.2) ExampLE. Let A,, be an abelian p-group of rank p—1 and type
(n+1,nn,---, n), that is A,, = (a,)X(a:) X -+ - x{a,_,) where a, is of order
p""' and a; is of order p”, if 2=<i <p — 1. Then an endomorphism T of A,, is
defined by:

al:=aa., for1=iZ=p-2, a"™™T" =1,

Obviously T is an automorphism of A,, of order p, which has the property that
for any integer i#0 mod p the endomorphism 1+ T° +(T'Y+ --- +(T'yY'is
identically zero on A,,. The extension G,, of A,, by T, where T? = af", is a
p-group of maximal class, and A (G,,) is elementary abelian of rank 2, two
linearly independent elements a, B € A(G.,,) given by ai=a,, T*=T"";
al=a7"”", TP =T.

It should be remarked that G, is a generalised quaternion group of order 2"*?,
and G,, is Blackburn’s example of an irregular p-group of class p, given in ([8],
111.10.15).

Let k,n always denote positive integers, Z[ X] the integer polynomial ring,
and n, (X):=30"' X' €Z[X). Then for any 1=r<k we have m(X)=

.

n(X)n._.(X"). We often consider the ring Z[T] of endomorphisms of the
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abelian group B, T € Aut(B), which is commutative, and obviously, if o(T) =
p* j#0 mod p, then n (T’) = n(T).

PROPOSITION.  Let B,,x be an abelian p-group of rank (p —1)p*~' and type
(n+1,n,n,---, n). Then B,,« has an automorphism T, of order p*, such that the
endomorphism n.(T') is zero on B, for every j#0 mod p*.

PROOF. Let B,k =(b)X(b:)X -+ X(b-1p*-1), where o(b))=p"*"' and
o(b)=p" for 2=i=(p—1)p*~'. We shall prove by induction over k the
following, stronger fact: B, . has an automorphism T, of order p*, satisfying (i)
B« = (b7T)), (ii) b0 =1 for j#0 mod p*. The case k =1 was described
above as (A.,, T). To prove the induction, we embed B.,. into

B, picr1 = (b10) X{b11) X+ -+ X{byp 1) X (b2} X =+ + X(bpoiypr-1p-1)

by identifying it with the subgroup Bu,« =(bo|1=i=(p — 1)p*™') of Bupis.
(o(bio)=p™*', and o(b;;) = p" for (i, j) # (1,0).) Then we can carry the action of
T. on B,,, over to B,,, and define Ty., on B,,;., by

bt i=bb,., f1=Sis(P-1)p*, 0=j<p-1,

bis™" 1= b4 if 1=is(p—1p“".

This defines an endomorphism of B, .+, since the images of the generators b,;
have suitable orders, and obviously using the induction hypothesis, we get
Bk = (blz_[(,T"“]). But then, for b{f(,T*"’Eker(Tk+.) we have

1= b{f(;rkﬁfl)’rk-ﬂ - b,lf(')rku)-rknp___ b;r"(‘)+lpf(Tk+l),

since Z[Ti..] is commutative. On the subgroup B.,. however, T%,, and T,
coincide, and therefore some power T%., inverts T%., on B,,.. Thus

1= b(Tkuy’"Tku)(Tkﬂy’_ Ty PT L Pf(T,) _ b!(Tkﬂ)
—VvVio - — V0 ’

1,0
and T,., is an automorphism of B, ... Clearly the order of T,., is p**'.
Now let j be a positive integer with j# 0 mod p*“*', let j = tp", where (1,p) = 1.
Then if r =0, we get n.(Tk+1) = msi(Ti+1), whence
1= b Teod) = prnTend _ TP
since m(T%+1) = nm(T) on B.,i and we can apply the induction hypothesis.
If r#0, then 1=r =k, since j#0 mod p**', and we have

Mesi(That) = M T801) = M (TS0t ¥ I Toar),
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and again the induction hypothesis implies

1ok :
1= b"k((Tk¢|‘,)p'_l)"l(T:¢l) — b"ku(Tkn')
- 1 1o

0 ’

since r—1=k —1.
Now the statement of the proposition follows, as any of the generators of B, .«
can be written b]"’ by (i), and n.(Ti) commutes with all the endomorphisms

f(T).

Let B:= B,,. and T:= T, € Aut(B.,.) a pair with the properties from the
proposition.

Let B =(b))x(b;)X +++ X{b,-np~-1), and consider the extension of B by T
where T '=bY", call it H,,.

Then any element of H,, can be written T'bi b with b € Q,(B). But if j#0
mod p". then (T'b{ by = T?"(bib)~™ = T"" by the properties of T. Therefore
for every element x € H,,\(T*", B) we have 1# x”" €(T""). If j =0 mod p",
then T'bib €(T*",B) andif i#0 mod p, 1 #(T'biby" = b¥"E(T*"). Therefore
by

“:=p, T:=T"""; and bf:=b""", T*:=T

two linearly independent power automorphisms of H,, are given. A (H,,) has
rank 2 and type (n,1).

We see that for n =2, A(H,,) is not elementary abelian, and if p is odd, it cen
not be embedded into the automorphism group of a cyclic group, since it is not
cyclic itself. For p =2 to be embeddable into Aut((x)) by restriction, A(H,,)
would have to induce the inverting automorphism on (x). But since
[x, A(H,,)] C(x*") this yields n = 1.

The following two examples show that there are p-groups, the power
automorphism group of which has rank 3. The second one is a 3-group of class 3;
thus the bound 2 on the rank of A (G) in (2.1) does not carry over to the case of
odd primes.

(2.3) ExamrLES. (a) Let A = (a)X (b)Xx{(c) be an abelian group of order 16,
such that a‘ = b>= ¢’ =1, and define automorphisms s,f of A by

s

a‘:=ab, b*:=ba’, c’:=c;

a':=ac, b':=ba? c':=ca’.

Then both are automorphisms of order 4 of A, and ¢ inverts s in Aut(A). We can
therefore extend A successively by s and ¢ setting a’=s*=1t*and s* = s~'. The
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extension G has order 2° and class 3, and the automorphisms of G induced by
the elements t*, s°t” and bc generate an elementary abelian power automor-
phism group of order eight.

(b) Let A = (a) X (b)X{c)X(z) be an elementary abelian 3-group of order 3*.
Then A has an elementary abelian group of automorphisms (y, x, t) of order 3°,
where

a’:=a, Vi=bz? cti=czd, zV:i=2z;

2 x x

a“:=az’, b*:=bz® c":=cz, z%:=2z;

t f 2 t

a':=a, b':=b, c'i=cz’, z':=2

If we extend A successively by y, x, and ¢, putting y*’ = x* ==z, and [y, x] = a,
[y, t] = ¢, [x,t] = b*, we get an extension H of order 3’ and class 3, and the power
automorphism group A (H) is elementary abelian of order 3°, generated by the
automorphisms induced by the elements a, a’b, and abc’.

REMARK. As indicated in the preceding examples, there is a general method
to construct p-groups having non-universal power automorphisms. It is based on
extending a group H of exponent p", n > 1, by a cyclic p-group (y) such that the
“norm map”’ (when H is abelian it is an endomorphism of H)

x—=(x) Xy (x) (x) ofy on H

maps every element x € H onto 1, if p does not divide i. This situation is very
similar to the one with p-groups for which the Hughes H,-subgroup is a proper
subgroup (see [6], theorem 2, p. 1099); in fact, if y* = 1, the semidirect product
of H by (y) will have this property. And indeed, for groups of exponent p” there
is a correspondence between groups possessing quasi-universal power au-
tomorphisms and groups of Hughes type, if we use this expression for the not
necessarily splitting extension of the group H of exponent p", n >1, by the
automorphism y of order p, such that the ‘“norm maps” on H are trivial for all
the nontrivial powers y* of y.

(2.4) (a) Every group G of exponent p* which is of Hughes type has a central
extension P possessing a quasi-universal power automorphism.

(b) Every group G of exponent p® possessing a quasi-universal power au-
tomorphism has a subgroup of Hughes type.

ProOOF. (a) Let y € G and H C G of index p, such that G =(y, H) is of
Hughes type. Then, if the extension is non-split, we have (y) N H =(y")C
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Z(G), and by y°:=y'*? h®:= h for h € H an automorphism 0 of G is defined
([13], lemma 3, p. 42), which satisfies (y'h)’ = y'hy” = y'n(y'h) for every
element y'h € G\H by the properties of y. Therefore, since H is of exponent p>,
6 is quasi-universal with 3, = {1, 1+ p}.

If y? =1, define P to be the extension of H by a cyclic group of order p?, (x),
such that x acts on H in the same way as y does, and that the extension splits.
Then (x?) C Z(P), and P/(x")= G, so P is a central extension of G. And again
the setting x*:=x""*, h*:=h for h € (x"H) defines a quasi-universal power
automorphism on P.

(b) Let G be a group of exponent p°, and let @« € A(G) be quasi-universal.
Then for some nontrivial power B of @ we can choose X, ={1,1+ p}. Let
y € G\Cs(B), and put U:= (y, Cs(B)). Then for every element y'h € U\Cs(B)
we have (y'hY =[y'h,B]=[y.B}=y" since B is quasi-universal, so
(hy" " "(hy'*7 - (h)'(h) =1 and since y* € Q(Z(G)) C Cs(B), we have that
y'h € U\Cs(B) is equivalent to i#0 mod p, and so U is of Hughes type, as
exp(Cs(B)) = p*® (otherwise B would be universal).

3. Metabelian groups of exponent p°

In this third section we shall consider the question, whether the existence of a
nontrivial power automorphism imposes restrictions on the nilpotence class of
the p-group G. The procedure is motivated by (1.4), which stated: If G is a
group of exponent p, which has a nontrivial power automorphism, then G is
abelian.

In the following, we shall answer the question for metabelian groups of
exponent p°. Thereby we make use of a result of Gupta and Newman ([3],
theorem, p. 362), but only in the following specialisation:

(3.1) THEOREM. Let G be a metabelian p-group, and let i,j, k be positive
integers strictly smaller than p. Then c(G)<i+j+k —1, provided

v (z, vua(y: X)) =[xy, 3% xz, 00, 2] =1 for every x,y,z € G.
l' i-t k

Proor. Since by hypothesis the above word holds in G, [3] tells that the
exponent of K.« (G)/Ki+js+1(G) divides (i?)(j!)(k!). But since i,j and k are
strictly smaller than p, none of the factorials i!, j!, or k! is divisible by p, so the
p-group Ki.j i (G)/Ki+j+i+1(G) is trivial, and since G is a finite nilpotent group,
we get Kiijw(G) = Ki.jixi(G) = 1.

For later reference we also need the following lemma, which is presumably
well-known.
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(3.2) LemMA. Let G =(x,y) be a metabelian p-group , and let Uy(G)C
Z(G). If G is p-abelian, then ¢(G)=p - 1.

ProoF. Since G is p-abelian, and since U:(G)C Z(G), the map z > 2" isa
homomorphism from G into Z(G), so exp(G') = p. Since by ([9], Satz 3, p. 10),
c(G/Z(G))=p —1, we have ¢(G)=p, and so ([10], Hilfssatz 3, p. 563) gives
P2 si(v, w) ™ =1 for every v,w EG, as G is p-abelian. But now ([10],
Hilfssatz 2, p. 562) which is a special case of ({1], lemma 1, p. 65) tells that
s:{(x,y)=1for 1 =i =p —1, and by ({10], Hilfssatz 1, p. 562) we get the result.

(3.3) LeMMA. Let G be a metabelian group of exponent p*, and let 1 # a €
A (G) be universal. Then '

(i) every two-generated subgroup of G has class at most p — 1,

(ii) G is a regular p-group,

(iii) c(G)=p.

Proor. For some nontrivial power B of @ we may assume %, = {1+ p}, and
so by (1.3a) G is p-abelian and Uy(G)C Z(G). Thus by (3.2) every two-
generated subgroup of G is of class at most p — 1, and hence regular. Regularity,
however, is a property that is checked on two elements, and so G is a regular
p-group (see also [12], lemma 1, p. 736). Finally, since v,-(y, x) € K, ((x,y)) =1
for every two elements x, y € G, we also have v,(z, v,_.(y, X)) = [1,-(y, x), 2] = 1
for every x,y,z € G. Now (3.1) tells c(G)=p.

If the power automorphism a of G is not universal, we have to consider
subgroups (x, y) of G, where y is fixed by &, while x is not. The easiest case is the
following one.

(3.4) LEMMA. Let G be a metabelian group of exponent p°, and let 1 # a €
A(G). Let x € G\Cs(a), and v € G’ of order p. Then c({(x,v))=p—1.

Proor. Let U:=(x,v), then since G is metabelian and v* =1, we have
exp(UY=p, and Ki(U)=(vi-x,0), Kin(U)). Thus [xv,a]=[x,a]€E(x")C
Z(G) gives

P
1=[v,x?]=[] v0i(x 0)%=v,(x v),
i=1
so c(U)=p, and we can use ([10], Hilfssatz 3) to get

(x'0) = x5, y(x', 0) " = x5, ,(x, v) P = xP .5, 4(x,v) for every integer
1=j=p-1
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Therefore ([xv, a]) = ((xv)") gives s,_.(x,v)E(x"), and since for 1=j=p—1
we have x’'v € G\Cs(a) and so (x'v)’ # 1, we conclude s,_(x,v)=1.

Now we treat the general case. Again, we make use of the fact that for
x,y € G, where G is a metabelian group of exponent p*, 1# a € A(G) and
x € G\Cs(a), y € Co(a), we have

() AYP)=(xy,aD={x\a)=(")CZ(G) forl=j=p-1

(3.5) LemMA. Let G be a metabelian group of exponent p* and 1#a €
A(G). Let U:=(x,y)C G, where x € G\Cs(a) and y € Cs(a). Then

(i) UK. (U)C Knsp-i(U){(x") for every m =2,

(i) s:(x,y) EKpr(U)x") for 1=i=p =2, y°5,1(%,y) € Kps(U)x"),

(i) c(U)=2(p —1).

Proor. Since U is a nilpotent group, Ui(K: (U)) C Kin+p-1(U)(x") for suffi-
ciently large m. So let k be the minimal integer for which this relation holds, and
assume by way of contradiction that k >2. Let v € K, -,(U) be an element of
order p°, then we can easily show by induction that K;({x, v)) C K.¢-1-1(U) for
j=2, so K,({(x,v))C Ku-n+p-1(U). By hypothesis we have Ui((x,v))C
UK (U)) C K op-(U)(x"?), so the Hall-Petrescu Formula tells x"v® = (xv)°
mod K _,.,—;(U)(x?) and by (*), since by hypothesis v € Ky(U) C Cs(ar), we get
v? € K- 1+,-1(U){x"), contradicting the minimality of k. By (i) and (*) we get
from ([10], Hilfssatz 3)

p—1
y"’_IJl ss(x,y) ™ =1mod K,..(U){x?) for 1Sj=p-1.

But instead of using ([10], Hilfssatz 2) like in (3.2) we must go back to Brisley’s
theorem now.

Put §(x,y):=s(x,y)™ for 1=i=p-2, and §,.(x’,y):=y"s,_a(x’, y).
Then we have for 1=j=<p-1

p—1

[T5', y)=1mod K,.(U){x").

i=1

Since the elements s;(x’, y) are central mod K,..(U)(x?), the elements 5;(x’, y)
do commute mod K,.,(U){x*) and we have

§(x,y)=5(x,yY mod K,..(U){x?), 1=ijsp-1.

Therefore we can apply ([1], lemma 1, p. 65) to get (ii). K, (U) is spanned mod
K,.,(U) by the elements s;(x,y), since U is metabelian, and so K,(U)C
(y*, x?, K,«(U)). Thus
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[KP(U)’ y] g [(yp1 xpv KPH(U»a Y] g KP”( U)’

and since U is metabelian, we get y € Cu(Ki(U)/K..o(U)) for every i = p. So
Ki(U) =(vi_p(x, y*), Kirs(U)) for i > p. Since y* € (x?, U’) and is an element of
order at most p, the elements x and y” lie in a subgroup of G that is generated
by x and an element of order p in G’, and so (3.4) yields v, ,(x,y?)=1.
Therefore K, (U)=K,,(U)=1, and (iii) holds.

For the proof of the main result in this section we need one more definition. If
a € G, we denote by M, the set {v,-.(a, w)l weE G}

(3.6) LeMMA.  Let G be a metabelian group of exponent p°, 1 # a € A(G) and
a € G\Cs(a). Then

(i) M, is an elementary abelian normal subgroup of G,

(i) if y € Cs(a), and U:=(y, a), then K,.,(U)C M..

Proor. The set M, is a subgroup of G; for, since G is metabelian,
vo-1(a, w)v,_i(a, w2) = v,i(a, wiwy) if w,w,€G'. Of course, M, CG' is
abelian, and since

(vp-1(a, W)t = v,4(a, w®) for wE G, g€EG,
M, is a normal subgroup of G.

Let v,-,(a, w) € M,. Then, since by (3.5) the class of (a, w) is at most 2p — 2,
we know that c¢({(a, v,-(a, w)))=p — 1, and (a, v,-.(a, w)) is a regular subgroup
of G. Therefore the (nontrivial!) restriction of a on (a, v,-.(a, w)) is universal,
and v,—(a, w) =1.

To prove (ii), let y € Cs(a), and put U:=(a, y). Then by (3.5ii), K,(U){a’) =
(sp-1(a, y), a? K,+1(U)), and y € Cu (K (U)/Ki.2(U)) for i =z p, and so for i >p
KU) = (v-iay), K(U), and K,.(U) = (via(ay) | i>p) =
(v,-1(a, viop(a, y))li > p), which is a subgroup of M..

(3.7) LeMMA. Let G be a metabelian group of exponent p*, 1 # a € A(G) and
s,t € G. Then there is an element a € G\Cs(a) such that v,_,.(s, t) E M..

Proor. Ifs € Cs(a) and t € G\Cs(a), then v,_1.(s, t) is in M, by (3.6ii); and
if t € Cs(a) and s € G\Cs(a) then v,_,,(s, ) €E M; by (3.6ii).

If 5,1 € G\Cs(a), then consider the group G/[G, a]. If exp(G/[G, a])=p,
then (s, t,[G, a])/[ G, a] is a two-generated metabelian group of exponent p, and
has therefore at most nilpotence class p —1 by ([9], Satz 3, p. 10). But since
[G, a] C Z(G), we get v,_i(s,1) € Z(G) and v,-1.(s, t) = 1. If exp(G/[G, a])=
p’, then the Hughes subgroup H,(G/[G, a]) of G/[G, a] is nontrivial and can by
([4], theorem, p. 451) only be of index 1 or p in G/[G, a]. We prove that
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for any nontrivial subgroup X of A (G) the Hughes

(+) subgroup H,(G/[G, X]) of G/[G, X] is covered by Cs(X).
H,(G/[G, X)) is generated by the cosets b[G, X] of order p* in G/[G, X], that
is, cosets b[G, X] for which b” £ [G, X]. But if there was an element 8 of X not
centralising b, we would have (b”) = ([b, B]) C[b, X] C[G, X], so b € Cs(X).

Since [G,a]C Co(a), and since a#1, we must have H,(G/[G, a])=
Cs(@)/[G, a] and | G/Cs(a)| = p. Thus t = sc for an element ¢ € Cs(a) and
Vp-1.1(8, 1) = Up-1.4(s, 5¢) € K,11((s, €)) C M..

Let finally s, ¢ € Cs(a). Then put U:=(s, t) C G, choose an arbitrary element
a € G\Cs(a) and put V:=UM,(a"), C:=C,(V/M,). By (3.5ii) we have
u*v,(a,u) € M,(a’) for every u € U, and since [v,-1(a, 5),t] =[v,-i(a, 1), s]
mod M,, we have

[v,-i(a, 5), 8, 5] =[v,-1(a, 5), 5, t] EM,,
[vp-i(a, 5), t, t] =[v,-1(a, 1), 5, t] =[Vp-1.4(a, 1), s] =1 mod M,,

and so [v,-i(a, 5),t], [v,-1(a, 1), s] € C. Therefore for any u;, u,€ U we have
[v,-1(a, u,), uz] € C, which is easily shown by induction over the length of u, as a
product in s and t. But then also [uf, u,] € C, and therefore Uy(U/UNC)C
Z(U/UNC). U/UNC is also p-abelian, for let u,, u, € U, then

(U U2 U, -1(a, Urlh;) = (UyU2) V-1, U:)[Up—1(a, u,), Us}v,-1(a, us)
= () (u) 7 (U2)? [v,-1(a, uy), us] =1 mod M,{a?),

and hence (u,u.y = ufuf mod C.
Now (3.2) yields c(U/UNC)=p-1, and therefore v,_,(s,t)€ C. Thus
Up-11(5, 1) E M,, as required.

(3.8) THEOREM. Let G be a metabelian group of exponent p*, and let 1 # a €
A(G). Then c(G)=2(p-1)+1.

Proor. Let first p be an odd prime. Then (3.1) will prove the statement,
provided we can show that for arbitrary elements x,y,z € G the element
Up-1(2, Up-1.1(y, X)) is equal to 1. In (3.7) we showed that v,_,.:(y, X) = v,_.(a, w)
for some w € G', a € G\Cs(a), and v,+(a, w) is an element of G’ of order 1 or
p by (3.6i) for every x, y € G. Therefore we are through, if z € G\Cs(a), since
we can apply (3.4). If z € Cs(a), put U:=(w, z). Then U/U(U) is a metabelian
group of exponent p that is generated by two elements, and hence by ({9], Satz 3,
p. 10) K,(U) C U(U). But U:«(G) C U(Z(G)G') by (3.5ii), and so v,_,(z, w) is
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an clement of G’ of order 1 or p; therefore v,.4(z,v,-1(a, w))=
v,-1(a, 1,-1(z, w)) = 1 by (3.4), completing the proof.

For p =2, we can even show ¢(G)=2, and don’t even need the hypothesis
that G is metabelian. Let y € Cs(a), x € G\Cs(a) be arbitrary elements, then
xy € G\Cs(a), and therefore o(xy)=4, and (xy)* = (xy)’. Thus [y,x]=1y?
since x?={[x,a] =[xy, a] =(xy)*=x’y[y, x]y. Hence x induces the inverting
automorphism on Cs(a), and Cs(a) is abelian. Furthermore the order of [y, x]
is1or2.

If exp(G/[G,a])=2, then G'C[Ga]CZ(G) and c(G)=2. I
exp(G/[G, a]) = 4, then the Hughes H,-subgroup of G/[G, a] is nontrivial, and
hence has index at most 2 in G/[G,a] by ([5], lemma 4, p. 664). Again
H(G/[G, a)]) is covered by Cs(a), see (**), and so Cs(a) has index 2 in G.
Therefore let x € G\Cs(a), then any nontrivial commutator in G has the form
[y, x] for some y € Cs(a), and lies in ,(Cs(a)). Since x inverts the whole of
Cs(a), it centralises the elementary abelian group G’ C Cs(a), and therefore
G'CZ(G), and c(G)=2.

If the group G is generated by two elements, then the bound on the nilpotence
class is a little better.

(3.9) THeOREM. Let G be a two-generated metabelian group of exponent p*
and 1# a € A(G). Then c(G)=2(p —1).

Proor. Since G is two-generated, and ¢(G)C Cs(a) by (1.3b) and (1.4),
two cases must be considered.

(i) Cs(a) has index p in G. Then we can apply (3.5iii)) immediately.

(ii) ¢(G)= Cs(a). Then, since the Hughes H,-subgroup of G/[G,a] is
covered by Cs(a), see (**), it has to be trivial by ([4], theorem, p. 451).
Therefore G/[G, a] is a two-generated metabelian group of exponent p, and
hence K,(G)C[G, a]C Z(G), and c(G)=p =2(p —1).

The following case is noted separately.

(3.10) Lemma. Let G be a metabelian group of exponent p°, 1 # a € A(G). If
a is of type 2, but not quasi-universal, then c(G)=p.

ProoOF. Since 1 does not occur in 3, we must have exp(Cs(a))=p, as
exp(G) = p*. Therefore exp(G/[G, a])=p, by (**), and for x,y € G we get
c(x, y[G, a)[G,a])=p —1 by ([9], Satz 3, p. 10). Thus v,.,(x,y) E[G,a]C
Z(G) and

[Vo-1(x,¥), 2] = 0i(2, v,-1(x,y)) =1  foreveryx,y,z €G.
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Now (3.1) yields ¢ (G) = p, and since « is not universal, we get ¢(G) = p by (1.5).

(3.11) THEOREM. Let G be a metabelian group of exponent p°, and let
|A(G)| =z p>. Then c(G)=p.

Proor. Since the automorphism group of a cyclic subgroup of G is cyclic,
A(G) cannot be embeddable into Aut({x)) for any x € G. Therefore G can not
be a regular p-group by (1.5), and hence ¢(G) = p. Also, Co(A(G)) is of index
greater than p in G, because otherwise G would be generated by Cs(A (G)) and
one further element x € G, whence A (G) would be embeddable into Aut((x))
by restriction. But the Hughes H,-subgroup H,(G/[G, A(G))) is covered by
Cs (A (G)), see (**), and so by ([4], theorem) the group G/[G, A(G)] must be of
exponent p. Thus again v,-,(x, y) lies in [G, A(G)] C Z(G) for any x, y € G, and
(3.1) gives c(G)=p.

(3.12) Lemma. Let G be a metabelian group of exponent p*, | A(G)| = p?, and
let « € A(G) be of type 2. Then « is quasi-universal, there are p — 1 quasi-
universal power automorphisms in A(G), and the rest of the nontrivial power
automorphisms in A(G) has type p.

ProorF. Again A(G) is elementary abelian and can not be embedded into
Aut((x)) for any x € G. Let x € G\Cs(a), and let B € A(G)\(a). Then for
some integer j, the element x is centralised by a’B. Let y € G\Cs(a’B), then
A:=(a, a’B) induces a group of power automorphisms on U:=(x, y) that is of
rank two. By (*) ((xy)’) =(y”), and since [xy, a] = xPy™ €{(xy))=(y?) for
some integers i, m, where i# 0 mod p, we get (x?) = (y”). Therefore by (1.3) «
induces a homomorphism from U into (x?}, the kernel of which is C, (). Thus
Cu(a) has index p in U, contains ¢(U) properly and so a centralises some
element x*y' € U\¢(U). But I#0 mod p, since x € U\Cu(a), and therefore
x*y' € U\Cu(a’B) has order p°>. So a centralises some element of order
p?=exp(G) and 1 € 3. Since a has type 2, it must be quasi-universal, and all
the nontrivial powers of a are quasi-universal, too.

Let z €(x*y') such that z” = x”. Since x* = x'*%, iZ0mod p, z* = z and @ is
quasi-universal, we get, for 1=r =p, (xz")""" = (xz")* = (xz")x", and (xz")° =
x®. Because A induces a noncyclic group of power automorphisms on U, the
element z € U isnot fixed by B, soif z? = z'*®, x® = x""*, then s # 0 mod p. For
1=r=p,

(xzr)B —_ xl+lpzr(l+sp) = (xzr)xp(t+ys) = (xzr)]+((+rs)p,
and since (¢ + rs) takes p different values mod p, if r does, the type of B is at least
p. But the type of 8 can not be greater than p by (1.4), since exp(G) = p°.
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ReMark. For groups of exponent 4, a power automorphism of type 2 is
always quasi-universal. For odd p however, there are metabelian groups of
exponent p® that have a power automorphism of type 2 which is not quasi-
universal, as the following example will show. The smallest 2-group having a
power automorphism of type 2 that is not quasi-universal is the generalised
quaternion group of order 16 described in (2.2).

(3.13) ExampPLE. Let p be an odd prime, and let A=
(a1) X{a,) X -+ X (a,-;) be an abelian group with o(a,) = p? and o(a;) =p for
2=i=p-—1. Then the endomorphism T of A given by a:= aa., for
1=i=p-2,and a,;-,:= a,-af, defines an automorphism of A of order p for
which the “norm endomorphism™ 1+ T+ T?+ -+ + T?"' maps every element
of A onto its (2p)th power (see [8], II1.10.15, Beweis, p. 334). We consider the
extension G of A by T, where T? = a;*.

Since the endomorphisms 1+ T' + T">+ - - - + T"*~" coincide on A for all the
nontrivial powers T’ of T, we get for an arbitrary element T'aiw € G, w € G:

(T,'a;w)p - Tip(a;w)]+Ti+TiZ+...+Ti(P"|) — a,];(2i~2]) lf 1 é] ép _ 1,

and (aiw)’ = a\ for T' € G'. Put H:=(Ta,, G", then H is a maximal subgroup
of G, and by ([13], lemma 3, p. 42) G has an automorphism 6, defined by
T°:=T"%, h®:=h for h €H. 6 is a power automorphism of G, and since
H = Cs(9) is of exponent p (H is a regular p-group generated by elements of
order p), 1 does not occur in %, Now

(T'aiw)® = (T T'aiw)® = TS *Ti"Tiaiw = (T'aiw)at® ™,
and so for z € A we have z° =2z""* and for z € G\A we have z° =z'*",

ReMark. The bounds given in (3.8) and (3.9) should be compared with the
nilpotency class of the free n-generated metabelian group of exponent p”. This
class was calculated by several authors according to n =2,3=n=p +1, and
n = p +2 (see review of N. D. Gupta, The free metabelian group of exponent p®,
MR 39 6984) and is 2p(p — 1) for n = 2, and n(p — 1) + (p — 1)’ for large n. So the
existence of a nontrivial power automorsm is fairly restrictive for metabelian
groups of exponent p’.

ADDITIONAL REMARK. It should be pointed out that the family of groups in
(2.2) has already been constructed in section 6 of [A1], and that {A2] assures the
existence of more examples like those in (2.3).
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